Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers.
نویسندگان
چکیده
Maize anthers, the male reproductive floral organs, express two classes of phased small-interfering RNAs (phasiRNAs). PhasiRNA precursors are transcribed by RNA polymerase II and map to low-copy, intergenic regions similar to PIWI-interacting RNAs (piRNAs) in mammalian testis. From 10 sequential cohorts of staged maize anthers plus mature pollen we find that 21-nt phased siRNAs from 463 loci appear abruptly after germinal and initial somatic cell fate specification and then diminish, whereas 24-nt phasiRNAs from 176 loci coordinately accumulate during meiosis and persist as anther somatic cells mature and haploid gametophytes differentiate into pollen. Male-sterile ocl4 anthers defective in epidermal signaling lack 21-nt phasiRNAs. Male-sterile mutants with subepidermal defects--mac1 (excess meiocytes), ms23 (defective pretapetal cells), and msca1 (no normal soma or meiocytes)--lack 24-nt phasiRNAs. ameiotic1 mutants (normal soma, no meiosis) accumulate both 21-nt and 24-nt phasiRNAs, ruling out meiotic cells as a source or regulator of phasiRNA biogenesis. By in situ hybridization, miR2118 triggers of 21-nt phasiRNA biogenesis localize to epidermis; however, 21-PHAS precursors and 21-nt phasiRNAs are abundant subepidermally. The miR2275 trigger, 24-PHAS precursors, and 24-nt phasiRNAs all accumulate preferentially in tapetum and meiocytes. Therefore, each phasiRNA type exhibits independent spatiotemporal regulation with 21-nt premeiotic phasiRNAs dependent on epidermal and 24-nt meiotic phasiRNAs dependent on tapetal cell differentiation. Maize phasiRNAs and mammalian piRNAs illustrate putative convergent evolution of small RNAs in male reproduction.
منابع مشابه
Unresolved issues in pre-meiotic anther development
Compared to the diversity of other floral organs, the steps in anther ontogeny, final cell types, and overall organ shape are remarkably conserved among Angiosperms. Defects in pre-meiotic anthers that alter cellular composition or function typically result in male-sterility. Given the ease of identifying male-sterile mutants, dozens of genes with key roles in early anther development have been...
متن کاملTranscriptomes and Proteomes Define Gene Expression Progression in Pre-meiotic Maize Anthers
Plants lack a germ line; consequently, during reproduction adult somatic cells within flowers must switch from mitotic proliferation to meiosis. In maize (Zea mays L.) anthers, hypoxic conditions in the developing tassel trigger pre-meiotic competence in the column of pluripotent progenitor cells in the center of anther lobes, and within 24 hr these newly specified germinal cells have patterned...
متن کاملThe organization and polarity of pollen mother cells of Triticum aestivum.
Colchicine has been applied to young developing anthers of Triticum aestivtim at varying stages of maturity from the last premeiotic mitoses of the archesporial and tapetal cells to the second meiotic divisions of the pollen mother cells. The developmental stage of the archesporium at which colchicine took effect was determined by cytological examination of the ploidy levels of the nuclei of th...
متن کاملTranscriptome profiling of maize anthers using genetic ablation to analyze pre-meiotic and tapetal cell types.
Oligonucleotide arrays were used to profile gene expression in dissected maize anthers at four stages: after-anther initiation, at the rapid mitotic proliferation stage, pre-meiosis, and meiotic prophase I. Nearly 9200 sense and antisense transcripts were detected, with the most diverse transcriptome present at the pre-meiotic stage. Three male-sterile mutants lacking a range of normal cell typ...
متن کاملA Novel RNA-Recognition-Motif Protein Is Required for Premeiotic G1/S-Phase Transition in Rice (Oryza sativa L.)
The molecular mechanism for meiotic entry remains largely elusive in flowering plants. Only Arabidopsis SWI1/DYAD and maize AM1, both of which are the coiled-coil protein, are known to be required for the initiation of plant meiosis. The mechanism underlying the synchrony of male meiosis, characteristic to flowering plants, has also been unclear in the plant kingdom. In other eukaryotes, RNA-re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 10 شماره
صفحات -
تاریخ انتشار 2015