Quantum Supremacy and the Complexity of Random Circuit Sampling

نویسندگان

  • Adam Bouland
  • Bill Fefferman
  • Chinmay Nirkhe
  • Umesh Vazirani
چکیده

A critical milestone on the path to useful quantum computers is quantum supremacy – a demonstration of a quantum computation that is prohibitively hard for classical computers. A leading near-term candidate, put forth by the Google/UCSB team, is sampling from the probability distributions of randomly chosen quantum circuits, which we call Random Circuit Sampling (RCS). In this paper we study both the hardness and verification of RCS. While RCS was defined with experimental realization in mind, we show complexity theoretic evidence of hardness that is on par with the strongest theoretical proposals for supremacy. Specifically, we show that RCS satisfies an average-case hardness condition – computing output probabilities of typical quantum circuits is as hard as computing them in the worst-case, and therefore #P-hard. Our reduction exploits the polynomial structure in the output amplitudes of random quantum circuits, enabled by the Feynman path integral. In addition, it follows from known results that RCS satisfies an anti-concentration property, making it the first supremacy proposal with both average-case hardness and anti-concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity-Theoretic Foundations of Quantum Supremacy Experiments

In the near future, there will likely be special-purpose quantum computers with 40-50 high-quality qubits. This paper lays general theoretical foundations for how to use such devices to demonstrate “quantum supremacy”: that is, a clear quantum speedup for some task, motivated by the goal of overturning the Extended Church-Turing Thesis as confidently as possible. First, we study the hardness of...

متن کامل

The Classical Complexity of Boson Sampling

We study the classical complexity of the exact Boson Sampling problem where the objective is to produce provably correct random samples from a particular quantum mechanical distribution. The computational framework was proposed by Aaronson and Arkhipov in 2011 as an attainable demonstration of ‘quantum supremacy’, that is a practical quantum computing experiment able to produce output at a spee...

متن کامل

Achieving quantum supremacy with sparse and noisy commuting quantum computations

The class of commuting quantum circuits known as IQP (instantaneous quantum polynomialtime) has been shown to be hard to simulate classically, assuming certain complexity-theoretic conjectures. Here we study the power of IQP circuits in the presence of physically motivated constraints. First, we show that there is a family of sparse IQP circuits that can be implemented on a square lattice of n ...

متن کامل

Merlin-Arthur with efficient quantum Merlin and quantum supremacy for the second level of the Fourier hierarchy

It is a long-standing open problem whether quantum computing can be verified by a classical verifier. In the computational complexity term, it is “Does any BQP problem have an interactive proof system with a BQP prover and a BPP verifier?”. Several partial solutions to the open problem have been obtained. For example, verifiable blind quantum computing protocols demonstrate that if the verifier...

متن کامل

Energy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach

This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018