Newton's method for overdetermined systems of equations
نویسندگان
چکیده
Complexity theoretic aspects of continuation methods for the solution of square or underdetermined systems of polynomial equations have been studied by various authors. In this paper we consider overdetermined systems where there are more equations than unknowns. We study Newton’s method for such a system.
منابع مشابه
Local convergence of the Gauss-Newton method for injective-overdetermined systems of equations under a majorant condition
We present, under a weak majorant condition, a local convergence analysis for the Gauss-Newton method for injective-overdetermined systems of equations in a Hilbert space setting. Our results provide under the same information a larger radius of convergence and tighter error estimates on the distances involved than in earlier studies such us [10, 11, 13, 14, 18]. Special cases and numerical exa...
متن کاملA Third Order Iterative Method for Finding Zeros of Nonlinear Equations
In this paper, we present a new modification of Newton's method for finding a simple root of a nonlinear equation. It has been proved that the new method converges cubically.
متن کاملA least-square semismooth Newton method for the second-order cone complementarity problem
We present a nonlinear least-square formulation for the second-order cone complementarity problem based on the Fischer-Burmeister (FB) function and the plus function. The formulation has twofold advantages. Firstly, the operator involved in the overdetermined system of equations inherits the favorable properties of the FB function for local convergence, for example, the (strong) semismoothness....
متن کاملNewton-Product Integration for a Stefan Problem with Kinetics
Stefan problem with kinetics is reduced to a system of nonlinear Volterra integral equations of second kind and Newton's method is applied to linearize it. Product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. An example is provided to illustrated the applicability of the method.
متن کاملAlgorithm Xxx: Alphacertified: Certifying Solutions to Polynomial Systems
Smale’s α-theory uses estimates related to the convergence of Newton’s method to certify that Newton iterations will converge quadratically to solutions to a square polynomial system. The program alphaCertified implements algorithms based on α-theory to certify solutions of polynomial systems using both exact rational arithmetic and arbitrary precision floating point arithmetic. It also impleme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 69 شماره
صفحات -
تاریخ انتشار 2000