Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens.
نویسندگان
چکیده
Strigolactones are a novel class of plant hormones controlling shoot branching in seed plants. They also signal host root proximity during symbiotic and parasitic interactions. To gain a better understanding of the origin of strigolactone functions, we characterised a moss mutant strongly affected in strigolactone biosynthesis following deletion of the CAROTENOID CLEAVAGE DIOXYGENASE 8 (CCD8) gene. Here, we show that wild-type Physcomitrella patens produces and releases strigolactones into the medium where they control branching of protonemal filaments and colony extension. We further show that Ppccd8 mutant colonies fail to sense the proximity of neighbouring colonies, which in wild-type plants causes the arrest of colony extension. The mutant phenotype is rescued when grown in the proximity of wild-type colonies, by exogenous supply of synthetic strigolactones or by ectopic expression of seed plant CCD8. Thus, our data demonstrate for the first time that Bryophytes (P. patens) produce strigolactones that act as signalling factors controlling developmental and potentially ecophysiological processes. We propose that in P. patens, strigolactones are reminiscent of quorum-sensing molecules used by bacteria to communicate with one another.
منابع مشابه
Strigolactones Inhibit Caulonema Elongation and Cell Division in the Moss Physcomitrella patens
In vascular plants, strigolactones (SLs) are known for their hormonal role and for their role as signal molecules in the rhizosphere. SLs are also produced by the moss Physcomitrella patens, in which they act as signaling factors for controlling filament extension and possibly interaction with neighboring individuals. To gain a better understanding of SL action at the cellular level, we investi...
متن کاملCryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens.
The blue light receptors termed cryptochromes mediate photomorphological responses in seed plants. However, the mechanisms by which cryptochrome signals regulate plant development remain obscure. In this study, cryptochrome functions were analyzed using the moss Physcomitrella patens. This moss has recently become known as the only plant species in which gene replacement occurs at a high freque...
متن کاملIn vivo visualization of F-actin structures during the development of the moss Physcomitrella patens.
* The 'in planta' visualization of F-actin in all cells and in all developmental stages of a plant is a challenging problem. By using the soybean heat inducible Gmhsp17.3B promoter instead of a constitutive promoter, we have been able to label all cells in various developmental stages of the moss Physcomitrella patens, through a precise temperature tuning of the expression of green fluorescent ...
متن کاملDefective Kernel 1 (DEK1) is required for three-dimensional growth in Physcomitrella patens
Orientation of cell division is critical for plant morphogenesis. This is evident in the formation and function of meristems and for morphogenetic transitions. Mosses undergo such transitions: from two-dimensional tip-growing filaments (protonema) to the generation of three-dimensional leaf-like structures (gametophores). The Defective Kernel 1 (DEK1) protein plays a key role in the perception ...
متن کاملAP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens.
Stem cells are formed at particular times and positions during the development of multicellular organisms. Whereas flowering plants form stem cells only in the sporophyte generation, non-seed plants form stem cells in both the sporophyte and gametophyte generations. Although the molecular mechanisms underlying stem cell formation in the sporophyte generation have been extensively studied, only ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 138 8 شماره
صفحات -
تاریخ انتشار 2011