Why is chemical synthesis and property optimization easier than expected?
نویسندگان
چکیده
Identifying optimal conditions for chemical and material synthesis as well as optimizing the properties of the products is often much easier than simple reasoning would predict. The potential search space is infinite in principle and enormous in practice, yet optimal molecules, materials, and synthesis conditions for many objectives can often be found by performing a reasonable number of distinct experiments. Considering the goal of chemical synthesis or property identification as optimal control problems provides insight into this good fortune. Both of these goals may be described by a fitness function J that depends on a suitable set of variables (e.g., reactant concentrations, components of a material, processing conditions, etc.). The relationship between J and the variables specifies the fitness landscape for the target objective. Upon making simple physical assumptions, this work demonstrates that the fitness landscape for chemical optimization contains no local sub-optimal maxima that may hinder attainment of the absolute best value of J. This feature provides a basis to explain the many reported efficient optimizations of synthesis conditions and molecular or material properties. We refer to this development as OptiChem theory. The predicted characteristics of chemical fitness landscapes are assessed through a broad examination of the recent literature, which shows ample evidence of trap-free landscapes for many objectives. The fundamental and practical implications of OptiChem theory for chemistry are discussed.
منابع مشابه
Optimization of Synthesis of Expandable Polystyrene by Multi-Stage Initiator Dosing
Suspension polymerization process is commonly used to produce expandable polystyrene. In the conventional method for producing this polymer, two different initiators are added to the process at two different temperature levels. In the industrial scale, this process is time consuming and difficult to control. A new method (Multi-Stage Initiator Dosing, MID) is proposed, in which, the initiator i...
متن کاملSupplemental Material to “ Why is Chemical Synthesis and Property Optimization Easier than Expected ? ”
This document presents the results found in the literature that give chemical synthesis or property fitness landscapes (not including those discussed in the main work), along with a brief description of the target objective and variables employed. The studies are grouped by objective target, in accordance with the tables in the main paper. Some basic aspects of the generally expected trap-free ...
متن کاملOptimization of electrospinning conditions for magnetic poly (acrylonitrile- co- acrylic acid) nanofibers
Magnetic poly (acrylonitrile-co-acrylic acid) (PAN-co-AA) composite nanofibers with different proportions of magnetic nanoparticles (MNPs) were fabricated using electrospinning technique. Electrospinning conditions like polymeric concentration, applied voltage, feeding rate, working distance, and collector type were explored and optimized to produce ultrafine- uniform size and bead free nanofib...
متن کاملInvestigation of CO2 and H2O Addition to Natural Gas for Production of Synthesis Gas
General modeling and optimization of syngas production via noncatalytic autothermal partial oxidation of methane are carried out using our developed scientific software which was based on the minimization of total Gibbs energy. In this work, a novel application of the direct search and Newton-Raphson methods was introduced to apply to optimization of a complex chemical reaction. Sensitivity ana...
متن کاملChemico- thermal synthesis of nano-structured cobalt with distinct magnetic property
The synthesis of nano- structured cobalt through a controlled chemical process followed by heat treating at various temperatures is studied. The product is characterized by ICP, XRD, FESEM , and TEM, indicating that the as- synthesized particles have an amorphous structure with 1.76 for Co/B ratio, an average size of 50 nm. The transformation of intermediate phases into single phase nano- cryst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 21 شماره
صفحات -
تاریخ انتشار 2011