Why don't ruminal bacteria digest cellulose faster?
نویسنده
چکیده
The bacteria Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus generally are regarded as the predominant cellulolytic microbes in the rumen. Comparison of available data from the literature reveals that these bacteria are the most actively cellulolytic of all mesophilic organisms described to date from any habitat. In light of numerous proposals to improve microbial cellulose digestion in ruminants, it is instructive to examine the characteristics of these species that contribute to their superior cellulolytic capabilities and to identify the factors that prevent them from digesting cellulose even more rapidly. As a group, these species have extreme nutritional specialization. They are able to utilize cellulose (or in some cases xylan) and its hydrolytic products as their nearly sole energy sources for growth. Moreover, each species apparently has evolved to similar maximum rates of cellulose digestion (first-order rate constants of 0.05 to 0.08 h-1). Active cellulose digestion involves adherence of cells to the fibers via a glycoprotein glycocalyx, which protects cells from protozoal grazing and cellulolytic enzymes from degradation by ruminal proteases while it retains-at least temporarily-the cellodextrin products for use by the cellulolytic bacteria. These properties result in different ecological roles for the adherent and nonadherent populations of each species, but overall provide an enormous selective advantage to these cellulolytic bacteria in the ruminal environment. However, major constraints to cellulose digestion are caused by cell-wall structure of the plant (matrix interactions among wall biopolymers and low substrate surface area) and by limited penetration of the nonmotile cellulolytic microbes into the cell lumen. Because of these constraints and the highly adapted nature of cellulose digestion by the predominant cellulolytic bacteria in the rumen, transfer of cellulolytic capabilities to noncellulolytic ruminal bacteria (e.g., by genetic engineering) that display other desirable properties offers limited opportunities to improve ruminal digestion of cellulose.
منابع مشابه
Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen.
Ruminant animals digest cellulose via a symbiotic relationship with ruminal microorganisms. Because feedstuffs only remain in the rumen for a short time, the rate of cellulose digestion must be very rapid. This speed is facilitated by rumination, a process that returns food to the mouth to be rechewed. By decreasing particle size, the cellulose surface area can be increased by up to 10(6)-fold....
متن کاملEffect of hydrophobicity of utilization of peptides by ruminal bacteria in vitro.
When mixed ruminal bacteria were incubated with a pancreatic casein hydrolysate and free amino acids of a similar composition, rates of ammonia production were much greater for peptides than for amino acids. The pancreatic digest of casein was then fractionated with 90% isopropyl alcohol. Hydrophobic peptides which dissolved in alcohol contained an abundance of phenolic and aliphatic amino acid...
متن کاملInhibition of ruminal cellulose fermentation by extracts of the perennial legume cicer milkvetch (Astragalus cicer).
Cicer milkvetch (Astragalus cicer L.) is a perennial legume used as a pasture or rangeland plant for ruminants. A study was undertaken to determine whether reported variations in its ruminal digestibility may be related to the presence of an antinutritive material. In vitro fermentation of neutral detergent fiber (NDF) of cicer milkvetch by mixed rumen microflora was poorer than was the ferment...
متن کاملDifferential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria.
In addition to its usual native crystalline form (cellulose I), cellulose can exist in a variety of alternative crystalline forms (allomorphs) which differ in their unit cell dimensions, chain packing schemes, and hydrogen bonding relationships. We prepared, by various chemical treatments, four different alternative allomorphs, along with an amorphous (noncrystalline) cellulose which retained i...
متن کاملCellulose digestion and phenol oxidation in coastal isopods (Crustacea: Isopoda)
In order to test three hypotheses on digestive constraints that may have affected the colonization of land by isopods, two marine isopods and one semi-terrestrial species were screened for their ability to oxidize phenolic compounds and digest cellulose in natural and artificial diets. Ligia pallasii (Isopoda: Oniscidea) and Gnorimosphaeroma oregonense (Isopoda: Sphaeromatidea) oxidized dietary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of dairy science
دوره 79 8 شماره
صفحات -
تاریخ انتشار 1996