Periodic Finite State Controllers for Efficient POMDP and DEC-POMDP Planning
نویسندگان
چکیده
Applications such as robot control and wireless communication require planning under uncertainty. Partially observable Markov decision processes (POMDPs) plan policies for single agents under uncertainty and their decentralized versions (DEC-POMDPs) find a policy for multiple agents. The policy in infinite-horizon POMDP and DEC-POMDP problems has been represented as finite state controllers (FSCs). We introduce a novel class of periodic FSCs, composed of layers connected only to the previous and next layer. Our periodic FSC method finds a deterministic finite-horizon policy and converts it to an initial periodic infinitehorizon policy. This policy is optimized by a new infinite-horizon algorithm to yield deterministic periodic policies, and by a new expectation maximization algorithm to yield stochastic periodic policies. Our method yields better results than earlier planningmethods and can compute larger solutions than with regular FSCs.
منابع مشابه
Planning under uncertainty for large-scale problems with applications to wireless networking ; Päätöksenteko epävarmuuden vallitessa suurissa ongelmissa ja sovelluksia langattomaan tiedonsiirtoon
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Joni Pajarinen Name of the doctoral dissertation Planning under uncertainty for large-scale problems with applications to wireless networking Publisher School of Science Unit Department of Information and Computer Science Series Aalto University publication series DOCTORAL DISSERTATIONS 20/2013 Field of research Computer and I...
متن کاملDual Formulations for Optimizing Dec-POMDP Controllers
Decentralized POMDP is an expressive model for multiagent planning. Finite-state controllers (FSCs)—often used to represent policies for infinite-horizon problems—offer a compact, simple-to-execute policy representation. We exploit novel connections between optimizing decentralized FSCs and the dual linear program for MDPs. Consequently, we describe a dual mixed integer linear program (MIP) for...
متن کاملSolving Multi-agent Decision Problems Modeled as Dec-POMDP: A Robot Soccer Case Study
Robot soccer is one of the major domains for studying the coordination of multi-robot teams. Decentralized Partially Observable Markov Decision Process (Dec-POMDP) is a recent mathematical framework which has been used to model multi-agent coordination. In this work, we model simple robot soccer as Dec-POMDP and solve it using an algorithm which is based on the approach detailed in [1]. This al...
متن کاملOptimally Solving Dec-POMDPs as Continuous-State MDPs
Decentralized partially observable Markov decision processes (Dec-POMDPs) provide a general model for decision-making under uncertainty in decentralized settings, but are difficult to solve optimally (NEXP-Complete). As a new way of solving these problems, we introduce the idea of transforming a Dec-POMDP into a continuous-state deterministic MDPwith a piecewise-linear and convex value function...
متن کاملSupervisor Synthesis of POMDP based on Automata Learning
As a general and thus popular model for autonomous systems, partially observable Markov decision process (POMDP) can capture uncertainties from different sources like sensing noises, actuation errors, and uncertain environments. However, its comprehensiveness makes the planning and control in POMDP difficult. Traditional POMDP planning problems target to find the optimal policy to maximize the ...
متن کامل