Local path-following property of inexact interior methods in nonlinear programming
نویسندگان
چکیده
Abstract. We study the local behavior of a primal-dual inexact interior point methods for solving nonlinear systems arising from the solution of nonlinear optimization problems or more generally from nonlinear complementarity problems. The algorithm is based on the Newton method applied to a sequence of perturbed systems that follows by perturbation of the complementarity equations of the original system. In case of an exact solution of the Newton system, it has been shown that the sequence of iterates is asymptotically tangent to the central path (Armand and Benoist, Math Program 115:199–222, 2008). The purpose of the present paper is to extend this result to an inexact solution of the Newton system. We give quite general conditions on the different parameters of the algorithm, so that this asymptotic property is satisfied.
منابع مشابه
A path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملConvergence Analysis of Inexact Infeasible Interior Point Method for Linear Optimization
In this paper we present the convergence analysis of the inexact infeasible path-following (IIPF) interior point algorithm. In this algorithm the preconditioned conjugate gradient method is used to solve the reduced KKT system (the augmented system). The augmented system is preconditioned by using a block triangular matrix. The KKT system is solved approximately. Therefore, it becomes necessary...
متن کاملConvergence Analysis of the Inexact Infeasible Interior-Point Method for Linear Optimization
We present the convergence analysis of the inexact infeasible pathfollowing (IIPF) interior-point algorithm. In this algorithm, the preconditioned conjugate gradient method is used to solve the reduced KKT system (the augmented system). The augmented system is preconditioned by using a block triangular matrix. The KKT system is solved approximately. Therefore, it becomes necessary to study the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 52 شماره
صفحات -
تاریخ انتشار 2012