From Local Polynomial Approximation to Pointwise Shape-adaptive Transforms: an Evolutionary Nonparametric Regression Perspective

نویسندگان

  • Alessandro Foi
  • Vladimir Katkovnik
چکیده

In this paper we review and discuss some of the theoretical and practical aspects, the problems, and the considerations that pushed our research from the one-dimensional LPA-ICI (local polynomial approximation interesection of conÞdence intervals) algorithm [27] to the development of powerful transform-based methods for anisotropic image processing [18, 15, 19, 20, 8, 21]. In this paper we do not present a new algorithm. Instead, we propose a different and more general interpretation of our recently-developed image denoising algorithms. In particular, we show how they can be treated as nonparametric estimators based on aggregation of a family of local estimates which are pointwise-adaptive in terms of both shape and order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiresolution local polynomial regression: A new approach to pointwise spatial adaptation

In nonparametric local polynomial regression the adaptive selection of the scale parameter (window size/bandwidth) is a key problem. Recently new efficient algorithms, based on Lepski’s approach, have been proposed in mathematical statistics for spatially adaptive varying scale denoising. A common feature of these algorithms is that they form test-estimates ŷh different by the scale h ∈H and sp...

متن کامل

Phase Local Approximation (PhaseLa) Technique for Phase Unwrap From Noisy Data

The local polynomial approximation (LPA) is a nonparametric regression technique with pointwise estimation in a sliding window. We apply the LPA of the argument of cos and sin in order to estimate the absolute phase from noisy wrapped phase data. Using the intersection of confidence interval (HCI) algorithm, the window size is selected as adaptive pointwise varying. This adaptation gives the ph...

متن کامل

Bootstrap Confidence Bands for the Autoregression Function

We derive a strong approximation of a local polynomial estimator (LPE) in nonparametric autoregression by an LPE in a corresponding nonparame-tric regression model. This generally suggests the application of regression-typical tools for statistical inference in nonparametric autoregressive models. It provides an important simpliication for the bootstrap method to be used: It is enough to mimic ...

متن کامل

Anisotropic local likelihood approximations: theory, algorithms, applications

We consider a signal restoration from observations corrupted by random noise. The local maximum likelihood technique allows to deal with quite general statistical models of signal dependent observations, relaxes the standard parametric modelling of the standard maximum likelihood, and results in ßexible nonparametric regression estimation of the signal. We deal with the anisotropy of the signal...

متن کامل

Analyzing Longitudinal Data Using Gee-Smoothing Spline

This paper considers nonparametric regression to analyze longitudinal data. Some developments of nonparametric regression have been achieved for longitudinal or clustered categorical data. For exponential family distribution, Lin & Carroll [6] considered nonparametric regression for longitudinal data using GEE-Local Polynomial Kernel (LPK). They showed that in order to obtain an efficient estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006