Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes.
نویسندگان
چکیده
Electron emission from single, supported Ag nanocubes excited with ultrafast laser pulses (λ = 800 nm) is studied via spatial and polarization correlated (i) dark field scattering microscopy (DFM), (ii) scanning photoionization microscopy (SPIM), and (iii) high-resolution transmission electron microscopy (HRTEM). Laser-induced electron emission is found to peak for laser polarization aligned with cube diagonals, suggesting the critical influence of plasmonic near-field enhancement of the incident electric field on the overall electron yield. For laser pulses with photon energy below the metal work function, coherent multiphoton photoelectron emission (MPPE) is identified as the most probable mechanism responsible for electron emission from Ag nanocubes and likely metal nanoparticles/surfaces in general.
منابع مشابه
The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization.
Silver nanocubes with sharp or truncated corners were synthesized, deposited on silicon substrates, and functionalized with Raman-active thiols for surface-enhanced Raman scattering (SERS) studies. The use of substrates with registration marks allowed us to correlate the SERS spectra from individual nanocubes to their physical parameters revealed by high-resolution SEM imaging. We observed dram...
متن کاملPhotocatalytic Activities Enhanced by Au-Plasmonic Nanoparticles on TiO2 Nanotube Photoelectrode Coated with MoO3
Although TiO2 was formerly a common material for photocatalysis reactions, its wide band gap (3.2 eV) results in absorbing only ultraviolet light, which accounts for merely 4% of total sunlight. Modifying TiO2 has become a focus of photocatalysis reaction research, and combining two metal oxide semiconductors is the most common method in the photocatalytic enhancement process. When MoO3 and TiO...
متن کاملRole of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.
We present experimental results for the plasmonic laser ablation of silicon with nanoscale features as small as 22 x 66 nm using single near-infrared, femtosecond laser pulses incident on gold nanorods. Near the ablation threshold, these features are photo-imprints of gold nanorod particles positioned on the surface of the silicon and have feature sizes similar to the nanorods. The single rod-s...
متن کاملSERS Substrates by the Assembly of Silver Nanocubes: High-Throughput and Enhancement Reliability Considerations
Small clusters of nanoparticles are ideal substrates for SERS measurements, but the SERS signal enhancement by a particular cluster is strongly dependent on its structural characteristics and the measurement conditions. Two methods for high-throughput assembly of silver nanocubes into small clusters at predetermined locations on a substrate are presented. These fabrication techniques make it po...
متن کاملRadiative Enhancement of Plasmonic Nanopatch Antennas
Efficient light manipulation at subwavelength scale is of great interest for solar energy conversion, optical sensing, and nanophotonic devices. Recently, plasmonic nanopatch antennas (PNAs), which consist of plasmonic nanoparticles and metal films with thin layers of dielectric spacers sandwiched between them, have shown promise for directing and enhancing radiation from the dipole emitters at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 12 9 شماره
صفحات -
تاریخ انتشار 2012