Effect of polymeric coatings on the static fatigue of double-coated optical fibers

نویسندگان

  • Sham-Tsong Shiue
  • Hao Ouyang
چکیده

The effect of polymeric coatings on the static fatigue of double-coated optical fibers is investigated. A closed form solution of the tensile stress in the glass fiber under the action of a constant tensile force in the fiber’s axial direction is obtained using viscoelastic theory. The tensile force is applied to the glass fiber and polymeric coatings. The applied tensile fore is gradually transferred from the polymeric coating to the glass fiber due to the viscoelastic behavior of the former, and the tensile stress in the glass fiber increases with time. This increase accelerates the failure of the glass fiber. The thickness and Young’s modulus of the secondary coating should be increased to ensure the long-term reliability of optical fibers, and the relaxation time of the secondary coating should be significantly larger than the expected lifetime of the optical fiber. However, the ratio of the proof-test load to the allowable external load should be increased if the secondary coating of the optical fiber has a high axial rigidity and low relaxation time. © 2001 American Institute of Physics. @DOI: 10.1063/1.1413955#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Coating Materials on Wear in Internal Gears

Theoretical and experimental investigation of wear during coupling in internal gears coated with various polymeric coating materials was performed in this study. In the theoretical part of the study, Archards’ wear formulation was adapted to internal gears and wear behavior in various conditions was determined. Moreover, a fatigue and wear testing apparatus having similar working principle with...

متن کامل

Photocatalytic self-cleaning properties of lanthanum and silver co-doped TiO2 nanocomposite on polymeric fibers

Titania, single-doped and lanthanum-silver co-doped titania nanocomposite were coated on cellulosic and polyacrylonitrile fibers via sol–gel method. The prepared samples were evaluated using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photolumines...

متن کامل

Photocatalytic self-cleaning properties of lanthanum and silver co-doped TiO2 nanocomposite on polymeric fibers

Titania, single-doped and lanthanum-silver co-doped titania nanocomposite were coated on cellulosic and polyacrylonitrile fibers via sol–gel method. The prepared samples were evaluated using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photolumines...

متن کامل

Effect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis

This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...

متن کامل

Hybrid glass coatings for optical fibers: effect of coating thickness on strength and dynamic fatigue characteristics of silica fibers

Specialty optical fibers operating in harsh aerospace environments are typically exposed to high temperatures and elevated humidity. This calls for better performing protective coatings. Recently developed sol-gel derived inorganicorganic hybrid materials called hybrid glass offered improved protective performance as compared to standard dual polymer coated fibers [1]. In this paper we examine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001