Effect of surface bond-order loss on electrical resistivity of metallic polycrystalline thin films

نویسندگان

  • T. C. Au Yeung
  • T. C. Chiam
  • C. K. Chen
  • C. Q. Sun
  • W. Z. Shangguan
  • W. K. Wong
  • C. H. Kam
چکیده

The effect of surface bond-order loss on the classical resistivity of metallic polycrystalline thin films is studied. The potential barriers due to grain boundaries considered here contain square-well depressions on both sides taking into account the effect of surface bond-order loss for the grains in a film. Electron scattering by film surfaces is also considered following the lines of Fuchs’ calculation. The dependence of the film resistivity on various parameters such as the film thickness, averaged grain size, portion of electron undergoing specular scattering by film surfaces, Fermi energy, and the width and depth of the square-well depressions is analyzed. It was found that the surface bond-order loss changes the film resistivity significantly, and the change in the film resistivity increases with increasing depth of the square-well depressions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of surface bond-order loss on the electronic thermal conductivity of metallic polycrystalline films

The effect of surface bond-order loss on the electronic thermal conductivity of metallic polycrystalline films is examined using Boltzmann transport theory. A modification of the grain boundary potential barrier has been made by adding depressed potential wells of intra-atomic trapping C. Q. Sun, Phys. Rev. B 69, 045105 2004 to both sides of the grain boundaries. Electron scattering by film sur...

متن کامل

Structural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films

Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...

متن کامل

Structural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films

Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...

متن کامل

Enhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates

Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...

متن کامل

The Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering

The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005