Disjoint Cycles of Different Lengths in Graphs and Digraphs
نویسندگان
چکیده
In this paper, we study the question of finding a set of k vertex-disjoint cycles (resp. directed cycles) of distinct lengths in a given graph (resp. digraph). In the context of undirected graphs, we prove that, for every k > 1, every graph with minimum degree at least k 2+5k−2 2 has k vertex-disjoint cycles of different lengths, where the degree bound is best possible. We also consider other cases such as when ∗This paper is dedicated to the memory of Nicolas Lichiardopol. †Supported by ERC Advanced Grant GRACOL, project no. 320812. ‡Supported by an FQRNT postdoctoral research grant and CIMI research fellowship. §Supported by NSFC (11601429, 11671320) and the Natural Science Foundation of Shaanxi Province (2016JQ1002, 2014JK1353). the electronic journal of combinatorics 24(4) (2017), #P4.37 1 the graph is triangle-free, or the k cycles are required to have different lengths modulo some value r. In the context of directed graphs, we consider a conjecture of Lichiardopol concerning the least minimum out-degree required for a digraph to have k vertex-disjoint directed cycles of different lengths. We verify this conjecture for tournaments, and, by using the probabilistic method, for some regular digraphs and digraphs of small order.
منابع مشابه
0n removable cycles in graphs and digraphs
In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...
متن کاملVertex Removable Cycles of Graphs and Digraphs
In this paper we defined the vertex removable cycle in respect of the following, if $F$ is a class of graphs(digraphs) satisfying certain property, $G in F $, the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $. The vertex removable cycles of eulerian graphs are studied. We also characterize the edge removable cycles of regular graphs(digraphs).
متن کاملOn vertex disjoint cycles of different lengths in 3-regular digraphs
Henning and Yeo [SIAM J. Discrete Math. 26 (2012) 687–694] conjectured that a 3-regular digraph D contains two vertex disjoint directed cycles of different length if either D is of sufficiently large order or D is bipartite. In this paper, we disprove the first conjecture. Further, we give support for the second conjecture by proving that every bipartite 3-regular digraph, which either possesse...
متن کاملOn C-ultrahomogeneous graphs and digraphs
The notion of a C-ultrahomogeneous graph, due to Isaksen et al., is adapted for digraphs and studied for the twelve cubic distance transitive graphs, with C formed by g-cycles and (k − 1)-paths, where g = girth and k = arc-transitivity. Excluding the Petersen, Heawood and Foster (90 vertices) graphs, one can go further by considering the (k− 1)-powers of g-cycles under orientation assignments p...
متن کاملIndependent domination in directed graphs
In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 24 شماره
صفحات -
تاریخ انتشار 2017