Spline Smoothing on Surfaces
نویسنده
چکیده
We present a method for estimating functions on topologically and/or geometrically complex surfaces from possibly noisy observations. Our approach is an extension of spline smoothing, using a Þnite element method. The paper has a substantial tutorial component: we start by reviewing smoothness measures for functions deÞned on surfaces, simplicial surfaces and differentiable structures on such surfaces, subdivison functions, and subdivision surfaces. After describing our method, we show results of an experiment comparing Þnite element approximations to exact smoothing splines on the sphere, and we give examples suggesting that generalized cross-validation is an effective way of determining the optimal degree of smoothing for function estimation on surfaces.
منابع مشابه
Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملSmoothing Spline Curves and Surfaces for Sampled Data
We consider the problem of designing optimal smoothing spline curves and surfaces for a given set of discrete data. For constructing curves and surfaces, we employ normalized uniform B-splines as the basis functions. First we derive concise expressions for the optimal solutions in the form which can be used easily for numerical computations as well as mathematical analyses. Then, assuming that ...
متن کاملDynamic Contour Modeling of Wet Material Objects by Periodic Smoothing Splines
We present a new scheme for modeling the contour of wet material objects by employing optimal design of periodic smoothing spline surfaces. The surfaces are constructed using normalized uniform B-splines as the basis functions, namely as weighted sum of shifted bi-variable B-splines. Then a central issue is to determine an optimal matrix of the so-called control points. A concise representation...
متن کاملSemi-Regular 4-8 Refinement and Box Spline Surfaces
In this paper we introduce a new mesh refinement method for subdivision surfaces. It generates a semiregular 4-direction hierarchical structure from control meshes representing 2D manifolds of arbitrary topology. The main advantage of this structure is that it allows the extraction of conforming variable-resolution meshes based on spatially varying adaptation functions. We also present a smooth...
متن کاملMulti-resolution Smoothing of Nurbs Curves Based on Non-uniform B-spline Wavelets
As a rule, an energy method is widely adopted for b-spline curve smoothing, but this method has the disadvantages such as massive calculation, computation complexity and low efficiency. Compared with the energy method, multi-resolution smoothing approaches nicely overcome these obstacles. Presently, some researches have been conducted on multi-resolution smoothing, but these efforts mainly aime...
متن کامل