Morphology for matrix data: Ordering versus PDE-based approach
نویسندگان
چکیده
Matrix fields are becoming increasingly important in digital imaging. In order to perform shape analysis, enhancement or segmentation of such matrix fields, appropriate image processing tools must be developed. This paper extends fundamental morphological operations to the setting of matrices, in the literature sometimes referred to as tensors despite the fact that matrices are only rank two tensors. The goal of this paper is to introduce and explore two approaches to mathematical morphology for matrix-valued data: One is based on a partial ordering, the other utilises nonlinear partial differential equations (PDEs). We start by presenting definitions for the maximum and minimum of a set of symmetric matrices since these notions are the cornerstones of the morphological operations. Our first approach is based on the Loewner ordering for symmetric matrices, and is in contrast to the unsatisfactory component-wise techniques. The notions of maximum and minimum deduced from the Loewner ordering satisfy desirable properties such as rotation invariance, preservation of positive semidefiniteness, and continuous dependence on the input data. These properties are also shared by the dilation and erosion processes governed by a novel nonlinear system of PDEs we are proposing for our second approach to morphology on matrix data. These PDEs are a suitable counterpart of the nonlinear equations known from scalar continuous-scale morphology. Both approaches incorporate information simultaneously from all matrix channels rather than treating them independently. In experiments on artificial and real medical positive semidefinite matrix-valued images we contrast the resulting notions of erosion, dilation, opening, closing, top hats, morphological derivatives, and shock filters stemming from these two alternatives. Using a ball shaped structuring element we illustrate the properties and performance of our orderingor PDE-driven morphological operators for matrix-valued data.
منابع مشابه
Mathematical Morphology for Tensor Data Induced by the Loewner Ordering in Higher Dimensions
Positive semidefinite matrix fields are becoming increasingly important in digital imaging. One reason for this tendency consists of the introduction of diffusion tensor magnetic resonance imaging (DTMRI). In order to perform shape analysis, enhancement or segmentation of such tensor fields, appropriate image processing tools must be developed. This paper extends fundamental morphological opera...
متن کاملImage Restoration Using A PDE-Based Approach
Image restoration is an essential preprocessing step for many image analysis applications. In any image restoration techniques, keeping structure of the image unchanged is very important. Such structure in an image often corresponds to the region discontinuities and edges. The techniques based on partial differential equations, such as the heat equations, are receiving considerable attention i...
متن کاملA new approach to fuzzy quantities ordering based on distance method and its applications for solving fuzzy linear programming
Many ranking methods have been proposed so far. However, there is yet no method that can always give a satisfactory solution to every situation; some are counterintuitive, not discriminating; some use only the local information of fuzzy values; some produce different ranking for the same situation. For overcoming the above problems, we propose a new method for ranking fuzzy quantities based on ...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملA Note on the Ldlt Decomposition of Matrices Fromsaddle - Point
Sparse linear systems Kx = b are considered where K is a specially structured symmetric indeenite matrix. These systems arise frequently, e.g., from mixed nite element discretiza-tions of PDE problems. The LDL T factorization of K with diagonal D and unit lower triangular L is known to exist for natural ordering of K but the resulting triangular factors can be rather dense. On the other hand, f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Image Vision Comput.
دوره 25 شماره
صفحات -
تاریخ انتشار 2007