High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene
نویسندگان
چکیده
The phytase activity in food and feedstuffs is an important nutritional parameter. Members of the Triticeae tribe accumulate purple acid phosphatase phytases (PAPhy) during grain filling. This accumulation elevates mature grain phytase activities (MGPA) up to levels between ~650 FTU/kg for barley and 6000 FTU/kg for rye. This is notably more than other cereals. For instance, rice, maize, and oat have MGPAs below 100 FTU/kg. The cloning and characterization of the PAPhy gene complement from wheat, barley, rye, einkorn, and Aegilops tauschii is reported here. The Triticeae PAPhy genes generally consist of a set of paralogues, PAPhy_a and PAPhy_b, and have been mapped to Triticeae chromosomes 5 and 3, respectively. The promoters share a conserved core but the PAPhy_a promoter have acquired a novel cis-acting regulatory element for expression during grain filling while the PAPhy_b promoter has maintained the archaic function and drives expression during germination. Brachypodium is the only sequenced Poaceae sharing the PAPhy duplication. As for the Triticeae, the duplication is reflected in a high MGPA of ~4200 FTU/kg in Brachypodium. The sequence conservation of the paralogous loci on Brachypodium chromosomes 1 and 2 does not extend beyond the PAPhy gene. The results indicate that a single-gene segmental duplication may have enabled the evolution of high MGPA by creating functional redundancy of the parent PAPhy gene. This implies that similar MGPA levels may be out of reach in breeding programs for some Poaceae, e.g. maize and rice, whereas Triticeae breeders should focus on PAPhy_a.
منابع مشابه
Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice.
Barley (Hordeum vulgare) and wheat (Triticum aestivum) possess significant phytase activity in the mature grains. Maize (Zea mays) and rice (Oryza sativa) possess little or virtually no preformed phytase activity in the mature grain and depend fully on de novo synthesis during germination. Here, it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) gen...
متن کاملDifferent site-specific N-glycan types in wheat (Triticum aestivum L.) PAP phytase.
Phytase activity in grain is essential to make phosphate available to cell metabolism, and in food and feed. Cereals contain the purple acid phosphatase type of phytases (PAPhy). Mature wheat grain is dominated by TaPAPhy_a which, in the present work, has been characterized by extensive peptide and glycopeptide sequencing by mass spectrometry. Seven N-linked glycosylation sites were found. Thre...
متن کاملIdentification of a Phytase Gene in Barley (Hordeum vulgare L.)
BACKGROUND Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. METHODOLOGY/PRINCIPAL FINDINGS Quantitative trait loci (QTL) analysis for phytase activity was condu...
متن کاملBarley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains
The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. T...
متن کاملCloning, Codon Optimization, and Expression of Yersinia intermedia Phytase Gene in E. coli
Background: Phytate is an anti-nutritional factor in plants, which catches the most phosphorus contents and some vital minerals. Therefore, Phytase is added mainly as an additive to the monogastric animals’ foods to hydrolyze phytate and increase absorption of phosphorus. Objectives: Y. intermedia phytase is a new phytase with special characteristics such as high specific activity, pH stabilit...
متن کامل