From Higman-Sims to Urysohn: a random walk through groups, graphs, designs, and spaces
نویسنده
چکیده
A better example is the Higman–Sims group. This is a primitive permutation group on 100 points. The point stabiliser is the Mathieu group M22, having orbits of sizes 1, 22 and 77, and acts 3-transitively on its orbit of size 22. Note that 77 = 22 · 21/6, so two points at distance 2 in the orbital graph of valency 22 have six common neighbours. The Higman–Sims group acts transitively on 3claws, on 4-cycles, and on paths of length 3 not contained in 4-cycles. (The graphwas constructed earlier by DaleMesner, who never thought to look at its automorphism group. The group was constructed in a different action by Graham Higman.)
منابع مشابه
Linear codes with complementary duals related to the complement of the Higman-Sims graph
In this paper we study codes $C_p(overline{{rm HiS}})$ where $p =3,7, 11$ defined by the 3- 7- and 11-modular representations of the simple sporadic group ${rm HS}$ of Higman and Sims of degree 100. With exception of $p=11$ the codes are those defined by the row span of the adjacency matrix of the complement of the Higman-Sims graph over $GF(3)$ and $GF(7).$ We show that these codes ha...
متن کاملTight Subdesigns of the Higman-sims Design
The Higman-Sims design is an incidence structure of 176 points and 176 blocks of cardinality 50 with every two blocks meeting in 14 points. The automorphism group of this design is the Higman-Sims simple group. We demonstrate that the point set and the block set of the Higman-Sims design can be partitioned into subsets X1, X2, . . . , X11 and B1, B2, . . . , B11, respectively, so that the subst...
متن کاملA theorem of Hrushovski–Solecki–Vershik applied to uniform and coarse embeddings of the Urysohn metric space
A theorem proved by Hrushovski for graphs and extended by Solecki and Vershik (independently from each other) to metric spaces leads to a stronger version of ultrahomogeneity of the infinite random graph R, the universal Urysohn metric space U, and other related objects. We propose a new proof of the result and show how it can be used to average out uniform and coarse embeddings of U (and its v...
متن کاملDecomposing the Higman-Sims graph into double Petersen graphs
It has been known for some time that the Higman-Sims graph can be decomposed into the disjoint union of two Hoffman-Singleton graphs. In this paper we establish that the Higman-Sims graph can be edge decomposed into the disjoint union of 5 double-Petersen graphs, each on 20 vertices. It is shown that in fact this can be achieved in 36960 distinct ways. It is also shown that these different ways...
متن کاملStrongly regular graphs and the Higman-Sims group
We introduce some well known results about permutation groups, strongly regular graphs, design theory and finite geometry. Our goal is the construction of the Higman-Sims group as an index 2 subgroup of the automorphism group of a (100, 22, 0, 6)-srg. To achieve this we introduce some tools from design theory. Some of the arguments here are slightly more general than those given in lectures. Al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007