Dimensional crossover in the quantum transport behaviour of the natural topological insulator Aleksite
نویسندگان
چکیده
Three-dimensional topological insulators comprise topologically protected surface states displaying massless, Dirac-like linear dispersion with spin-momentum locking. Electrical conduction through such surface states has been documented to manifest itself in a two-dimensional character of the angle-dependent magnetotransport behavior. Here, we explore the size-dependent electronic properties of nanostructures made of the lead-containing mineral Aleksite, a naturally occurring topological insulator. Compared to its sister compound Kawazulite, a member of the well-studied Tetradymite crystal class, the crystal structure of Aleksite is distinguished by its lack of any counterpart within the group of synthetic topological insulators. Low temperature Hall measurements on thin Aleksite nanosheets reveal a significant carrier mobility on the order of 1000 cm(2)/(Vs), and a high carrier density of n = 3.9 × 10(25) m(-3). Importantly, for Aleksite nanoribbons with a width below 150 nm, a 1D weak antilocalization effect along with 1D universal conductance fluctuations emerges, which transforms into 2D behavior for larger ribbon widths.
منابع مشابه
Conductance distribution in disordered quantum wires: Crossover between the metallic and insulating regimes
We calculate the distribution of the conductance P(g) for a quasi-one-dimensional system in the metal to insulator crossover regime, based on a recent analytical method valid for all strengths of disorder. We show the evolution of P(g) as a function of the disorder parameter from a insulator to a metal. Our results agree with numerical studies reported on this problem, and with exact analytical...
متن کاملGiant anisotropic magnetoresistance in a quantum anomalous Hall insulator
When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new platform for studies of 1D transport, ...
متن کاملCrossover between Weak Antilocalization and Weak Localization of Bulk States in Ultrathin Bi2Se3 Films
We report transport studies on the 5 nm thick Bi₂Se₃ topological insulator films which are grown via molecular beam epitaxy technique. The angle-resolved photoemission spectroscopy data show that the Fermi level of the system lies in the bulk conduction band above the Dirac point, suggesting important contribution of bulk states to the transport results. In particular, the crossover from weak a...
متن کاملCrossover from 3D to 2D quantum transport in Bi2Se3/In2Se3 superlattices.
The topological insulator/normal insulator (TI/NI) superlattices (SLs) with multiple Dirac channels are predicted to offer great opportunity to design novel materials and investigate new quantum phenomena. Here, we report first transport studies on the SLs composed of TI Bi2Se3 layers sandwiched by NI In2Se3 layers artificially grown by molecular beam epitaxy (MBE). The transport properties of ...
متن کاملDimensional crossover and cold-atom realization of topological Mott insulators
Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding sui...
متن کامل