Identification of microRNA precursors with new sequence-structure features
نویسندگان
چکیده
MicroRNAs are an important subclass of non-coding RNAs (ncRNA), and serve as main players into RNA interference (RNAi). Mature microRNA derived from stem-loop structure called precursor. Identification of precursor microRNA (pre-miRNA) is essential step to target microRNA in whole genome. The present work proposed 25 novel local features for identifying stemloop structure of pre-miRNAs, which captures characteristics on both the sequence and structure. Firstly, we pulled the stem of hairpins and aligned the bases in bulges and internal loops used ‘―’, and then counted 24 base-pairs (‘AA’, ‘AU’, ..., ‘―G’, except ‘――’) in pulled stem (formalized by length of pulled stem) as features vector of Support Vector Machine (SVM). Performances of three classifiers with our features and different kernels trained on human data were all superior to Triplet-SVM-classifier’s in positive and negative testing data sets. Moreover, we achieved higher prediction accuracy through combining 7 global sequence-structure. The result indicates validity of novel local features.
منابع مشابه
Computational Identification of Micro RNAs and Their Transcript Target(s) in Field Mustard (Brassica rapa L.)
Background: Micro RNAs (miRNAs) are a pivotal part of non-protein-coding endogenous small RNA molecules that regulate the genes involved in plant growth and development, and respond to biotic and abiotic environmental stresses posttranscriptionally.Objective: In the present study, we report the results of a systemic search for identifi cation of new miRNAs in B. rapa using homology-based ...
متن کاملIdentification of MicroRNA Precursors via SVM
MiRNAs are short non-coding RNAs that regulate gene expression. While the first miRNAs were discovered using experimental methods, experimental miRNA identification remains technically challenging and incomplete. This calls for the development of computational approaches to complement experimental approaches to miRNA gene identification. We propose in this paper a de novo miRNA precursor predic...
متن کاملIntegrated Sequence-Structure Motifs Suffice to Identify microRNA Precursors
BACKGROUND Upwards of 1200 miRNA loci have hitherto been annotated in the human genome. The specific features defining a miRNA precursor and deciding its recognition and subsequent processing are not yet exhaustively described and miRNA loci can thus not be computationally identified with sufficient confidence. RESULTS We rendered pre-miRNA and non-pre-miRNA hairpins as strings of integrated ...
متن کاملBenchmark comparison of ab initio microRNA identification methods and software.
MicroRNAs (miRNAs) are short, non-coding RNA molecules that play an important role in the world of genes, especially in regulating the gene expression of target messenger RNAs through cleavage or translational repression of messenger RNA. Ab initio methods have become popular in computational miRNA detection. Most software tools are designed to distinguish miRNA precursors from pseudo-hai...
متن کاملCombining Multi-Species Genomic Data for MicroRNA Identification Using a Naïve Bayes Classifier Machine Learning for Identification of MicroRNA Genes
Motivation: Numerous computational methodologies utilize techniques based on sequence conservation and/or structural similarity for microRNA gene prediction. In this study we describe a new technique, which is applicable across several species, for predicting microRNA genes. This technique is based on machine learning, using the Naïve Bayes classifier. This computational procedure automatically...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009