A Derandomized Sparse Johnson-Lindenstrauss Transform

نویسندگان

  • Daniel M. Kane
  • Jelani Nelson
چکیده

Recent work of [Dasgupta-Kumar-Sarlós, STOC 2010] gave a sparse Johnson-Lindenstrauss transform and left as a main open question whether their construction could be efficiently derandomized. We answer their question affirmatively by giving an alternative proof of their result requiring only bounded independence hash functions. Furthermore, the sparsity bound obtained in our proof is improved. The main ingredient in our proof is a spectral moment bound for quadratic forms that was recently used in [Diakonikolas-Kane-Nelson, CoRR abs/0911.3389].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Fast Johnson-Lindenstrauss Embeddings for Large Data Sets

We introduce a new fast construction of a Johnson-Lindenstrauss matrix based on the composition of the following two embeddings: A fast construction by the second author joint with Ward [1] maps points into a space of lower, but not optimal dimension. Then a subsequent transformation by a dense matrix with independent entries reaches an optimal embedding dimension. As we show in this note, the ...

متن کامل

The Fast Johnson-lindenstrauss Transform

While we omit the proof, we remark that it is constructive. Specifically, A is a linear map consisting of random projections onto subspaces of Rd. These projections can be computed by n matrix multiplications, which take time O(nkd). This is fast enough to make the Johnson-Lindenstrauss transform (JLT) a practical and widespread algorithm for dimensionality reduction, which in turn motivates th...

متن کامل

Toward a Unified Theory of Sparse Dimensionality Reduction in Euclidean Space Jean Bourgain and Jelani Nelson

Let Φ ∈ Rm×n be a sparse Johnson-Lindenstrauss transform [KN] with s non-zeroes per column. For T a subset of the unit sphere, ε ∈ (0, 1/2) given, we study settings for m, s required to ensure E Φ sup x∈T ∣∣‖Φx‖22 − 1∣∣ < ε, i.e. so that Φ preserves the norm of every x ∈ T simultaneously and multiplicatively up to 1 + ε. In particular, our most general theorem shows that it suffices to set m = ...

متن کامل

Fast Nearest Neighbor Preserving Embeddings

We show an analog to the Fast Johnson-Lindenstrauss Transform for Nearest Neighbor Preserving Embeddings in `2. These are sparse, randomized embeddings that preserve the (approximate) nearest neighbors. The dimensionality of the embedding space is bounded not by the size of the embedded set n, but by its doubling dimension λ. For most large real-world datasets this will mean a considerably lowe...

متن کامل

Rademacher Chaos, Random Eulerian Graphs and The Sparse Johnson-Lindenstrauss Transform

The celebrated dimension reduction lemma of Johnson and Lindenstrauss has numerous computational and other applications. Due to its application in practice, speeding up the computation of a Johnson-Lindenstrauss style dimension reduction is an important question. Recently, Dasgupta, Kumar, and Sarlos (STOC 2010) constructed such a transform that uses a sparse matrix. This is motivated by the de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2010