Probability Grid Mapping System for Aerial Search (PGM)

نویسندگان

  • Muna Shabaneh
  • Sion Jennings
  • Abdullah Merei
  • Robert S. Allison
چکیده

Aerial search for targets on the ground is a challenging task and success depends on providing proper intelligence to the searchers. Recent advances in avionics enhanced and synthetic vision systems (ESVS) offer new opportunities to present this information to aircrew. This paper describes the concept and implementation of a new ESVS technique intended to support flight crews in aerial search for search and rescue missions and other guided search scenarios. Most enhanced vision systems for aviation have targeted the pilot in order to support flight and navigation tasks. The Probability Grid Mapping system (PGM) is unique in that it aims to improve the effectiveness of the other officer in the aircraft who is managing and performing the tactical mission. The PGM provides the searcher with an augmented, conformal, digital moving map of the search area that encodes the estimated probability of the target being found in various locations. A priori estimation of these probabilities allows for prioritization of search areas, reduces search duplication and improves coverage and ideally maximizes search effectiveness. The conformal 3D map is displayed with appropriate perspective projection using a head-slaved optical see-through head-mounted display allowing it to be registered with and augment the real world. To evaluate the system prior to flight test, a simulation environment was developed for study of the effectiveness of highlighting methods, update strategies, and probability mapping methods. Keywords-component; Enhanced Synthetic Vision Systems; Search and Rescue Operations; Aerial search; Optical SeeThrough HMD; Augmented Reality

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistent Grid Mapping: A GPU-based Framework for Interactive Terrain Rendering

In this paper we present the Persistent Grid Mapping (PGM), a novel framework for interactive terrain rendering that provides a screen-uniform tessellation of terrains in a view-dependent manner. The persistent grid, which covers the entire screen, is triangulated with respect to the rendering capabilities of the graphics hardware and cached in video memory. The GPU maps each vertex of the pers...

متن کامل

A multiple UAV system for vision-based search and localization, Report no. LiTH-ISY-R-2865

The contribution of this paper is an experimentally veri ed real-time algorithm for combined probabilistic search and track using multiple unmanned aerial vehicles (UAVs). Distributed data fusion provides a framework for multiple sensors to search for a target and accurately estimate its position. Vision based sensing is employed, using xed downward-looking cameras. These sensors are modeled to...

متن کامل

MAPPING THE RISK OF FOREST WIND DAMAGE USING AIRBORNE SCANNING LiDAR

Wind damage is known for causing threats to sustainable forest management and yield value in boreal forests. Information about wind damage risk can aid forest managers in understanding and possibly mitigating damage impacts. The objective of this research was to better understand and quantify drivers of wind damage, and to map the probability of wind damage. To accomplish this, we used open-acc...

متن کامل

Indoor GPS-denied Context Based SLAM Aided Guidance for Autonomous Unmanned Aerial Systems

Autonomous exploration and mapping of environments is an important problem in robotics. Efficient exploration of structured environments requires that the robot utilize region-specific exploration strategies and coordinate with search other agents. This paper details the exploration and guidance system of a multi-quadrotor unmanned aerial system (UAS) capable of exploring cluttered indoor areas...

متن کامل

MRSLaserMap: Local Multiresolution Grids for Efficient 3D Laser Mapping and Localization

In this paper, we present a three-dimensional mapping system for mobile robots using laser range sensors. Our system provides sensor preprocessing, efficient local mapping for reliable obstacle perception, and allocentric mapping with real-time localization for autonomous navigation. The software is available as open-source ROS-based package and has been successfully employed on different robot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009