High-temperature continuous-wave laser realized in hollow microcavities
نویسندگان
چکیده
Recently, an urgent requirement of ultraviolet (UV) semiconductor laser with lower cost and higher performance has motivated our intensive research in zinc oxide (ZnO) material owing to its wide direct band gap and large exciton binding energy. Here, we demonstrate for the first time continuous-wave laser in electrically-pumped hollow polygonal microcavities based on epitaxial ZnO/MgO-core/shell nanowall networks structures, and whispering gallery type resonant modes are responsible for the lasing action. The laser diodes exhibit an ultralow threshold current density (0.27 A/cm(2)), two or three orders of magnitude smaller than other reported UV-light semiconductor laser diodes to our knowledge. More importantly, the continuous-current-driven diode can achieve lasing up to ~430 K, showing a good temperature tolerance. This study indicates that nano-size injection lasers can be made from epitaxial semiconductor microcavities, which is a considerable advance towards the realization of practical UV coherent light sources, facilitating the existing applications and suggesting new potentials.
منابع مشابه
Enhanced Photoluminescence from Embedded PbSe Colloidal Quantum Dots in Silicon-Based Random Photonic Crystal Microcavities
The experimental observation of enhanced photoluminescence from high-Q silicon-based random photonic crystal microcavities embedded with PbSe colloidal quantum dots is being reported. The emission is optically excited at room temperature by a continuous-wave Ti-sapphire laser and exhibits randomly distributed localized modes with a minimum spectral linewidth of 4 nm at 1.5 μm wavelength.
متن کاملSynthesis of Al2O3-ZrO2 Nanocomposite by Mechanical Activated Self-propagating High Temperature Synthesis(MASHS) and Ignited via Laser
By consideration of unique properties of composite Al2O3-ZrO2 such as high toughness, high wear resistant and relative low thermal expansion, in this study, nanocomposite of Al2O3-ZrO2 was produced by Mechanical activated Self propagating High-temperature Synthesis (MASHS) using laser beam for ignition. First Al and ZrO2 powders were mixed in the mole ratio of 1:1 and milled for 1, 3 and 6 hour...
متن کاملSemiconductor Lasers: Device Physics and Applications
• Demonstration of an enhancement in the modulation bandwidth from 16 GHz to 28 GHz in an injection locked semiconductor laser with a coincident reduction in parasitic chirp. • Demonstration of room-temperature, continuous-wave operation of the first bipolar cascade laser. This laser demonstrated an internal efficiency of 150% and a measured external modulation efficiency of 99.3%. Continuous-w...
متن کاملLow-threshold whispering-gallery-mode microlasers fabricated in a Nd:glass substrate by three-dimensional femtosecond laser micromachining.
We report on fabrication of whispering-gallery-mode microlasers in a Nd:glass chip by femtosecond laser three-dimensional micromachining. The main fabrication procedures include the fabrication of freestanding microdisks supported by thin pillars by femtosecond laser ablation of the glass substrate immersed in water, followed by CO2 laser annealing for surface smoothing. The quality (Q) factor ...
متن کاملEfficient frequency generation in phoXonic cavities based on hollow whispering gallery mode resonators
We report on nonlinear optical effects on phoxonic cavities based on hollow whispering gallery mode resonators pumped with a continuous wave laser. We observed stimulated scattering effects such as Brillouin and Raman, Kerr effects such as degenerated and non-degenerated four wave mixing, and dispersive wave generation. These effects happened concomitantly. Hollow resonators give rise to a very...
متن کامل