The Polynomial Sieve and Equal Sums of like Polynomials
نویسنده
چکیده
A new “polynomial sieve” is presented and used to show that almost all integers have at most one representation as a sum of two values of a given polynomial of degree at least 3.
منابع مشابه
Equal sums of like polynomials
Let f ∈ Z[x] be a polynomial of degree d. We establish the paucity of non-trivial positive integer solutions to the equation f(x1) + f(x2) = f(x3) + f(x4), provided that d ≥ 7. We also investigate the corresponding situation for equal sums of three like polynomials. Mathematics Subject Classification (2000): 11D45 (11P05)
متن کاملOmega and PIv Polynomial in Dyck Graph-like Z(8)-Unit Networks
Design of crystal-like lattices can be achieved by using some net operations. Hypothetical networks, thus obtained, can be characterized in their topology by various counting polynomials and topological indices derived from them. The networks herein presented are related to the Dyck graph and described in terms of Omega polynomial and PIv polynomials.
متن کاملSome relations between Kekule structure and Morgan-Voyce polynomials
In this paper, Kekule structures of benzenoid chains are considered. It has been shown that the coefficients of a B_n (x) Morgan-Voyce polynomial equal to the number of k-matchings (m(G,k)) of a path graph which has N=2n+1 points. Furtermore, two relations are obtained between regularly zig-zag nonbranched catacondensed benzenid chains and Morgan-Voyce polynomials and between regularly zig-zag ...
متن کاملNonnegative Polynomials and Sums of Squares
A real polynomial in n variables is called nonnegative if it is greater than or equal to 0 at all points in R. It is a central question in real algebraic geometry whether a nonnegative polynomial can be written in a way that makes its nonnegativity apparent, i.e. as a sum of squares of polynomials (or more general objects). Algorithms to obtain such representations, when they are known, have ma...
متن کاملRotations and Translations of Number Field Sieve Polynomials
We present an algorithm that finds polynomials with many roots modulo many primes by rotating candidate Number Field Sieve polynomials using the Chinese Remainder Theorem. We also present an algorithm that finds a polynomial with small coefficients among all integral translations of X of a given polynomial in ZZ[X]. These algorithms can be used to produce promising candidate Number Field Sieve ...
متن کامل