CDO, A Robo-related Cell Surface Protein that Mediates Myogenic Differentiation
نویسندگان
چکیده
CDO, a member of the Ig/fibronectin type III repeat subfamily of transmembrane proteins that includes the axon guidance receptor Robo, was identified by virtue of its down-regulation by the ras oncogene. We report here that one prominent site of cdo mRNA expression during murine embryogenesis is the early myogenic compartment (newly formed somites, dermomyotome and myotome). CDO is expressed in proliferating and differentiating C2C12 myoblasts and in myoblast lines derived by treating 10T1/2 fibroblasts with 5-azacytidine, but not in parental 10T1/2 cells. Overexpression of CDO in C2C12 cells accelerates differentiation, while expression of secreted soluble extracellular regions of CDO inhibits this process. Oncogenic Ras is known to block differentiation of C2C12 cells via downregulation of MyoD. Reexpression of CDO in C2C12/Ras cells induces MyoD; conversely, MyoD induces CDO. Reexpression of either CDO or MyoD rescues differentiation of C2C12/Ras cells without altering anchorage-independent growth or morphological transformation. CDO and MyoD are therefore involved in a positive feedback loop that is central to the inverse relationship between cell differentiation and transformation. It is proposed that CDO mediates, at least in part, the effects of cell-cell interactions between muscle precursors that are critical in myogenesis.
منابع مشابه
Cdo Interacts with APPL1 and Activates AKT in Myoblast Differentiation
Cell-cell interactions between muscle precursors are required for myogenic differentiation; however, underlying mechanisms are largely unknown. Promyogenic cell surface protein Cdo functions as a component of multiprotein complexes containing other cell adhesion molecules, Boc, Neogenin and N-cadherin, and mediates some of signals triggered by cell-cell interactions between muscle precursors. C...
متن کاملCdo Regulates Surface Expression of Kir2.1 K+ Channel in Myoblast Differentiation
A potassium channel Kir2.1-associated membrane hyperpolarization is required for myogenic differentiation. However the molecular regulatory mechanisms modulating Kir2.1 channel activities in early stage of myogenesis are largely unknown. A cell surface protein, Cdo functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that Cdo forms a co...
متن کاملPhosphorylation of Stim1 at serine 575 via netrin-2/Cdo–activated ERK1/2 is critical for the promyogenic function of Stim1
The promyogenic cell surface molecule Cdo is required for activation of extracellular signal-regulated kinase (ERK) and nuclear factor of activated T cells c3 (NFATc3) induced by netrin-2 in myogenic differentiation. However, the molecular mechanism leading to NFATc3 activation is unknown. Stromal interaction molecule 1 (Stim1), an internal calcium sensor of the endoplasmic reticulum store, pro...
متن کاملCdo promotes neuronal differentiation via activation of the p38 mitogen-activated protein kinase pathway.
Neural basic helix-loop-helix transcription factors (bHLHs) control many aspects of neurogenesis, such as proliferation, fate determination, and differentiation. We have previously shown that the promyogenic cell surface receptor Cdo modulates the Cdc42 and p38 mitogen-activated protein kinase (MAPK) pathways via a direct association with two scaffold-type proteins, JLP and Bnip-2, to regulate ...
متن کاملA Cdo–Bnip-2–Cdc42 signaling pathway regulates p38α/β MAPK activity and myogenic differentiation
The p38alpha/beta mitogen-activated protein kinase (MAPK) pathway promotes skeletal myogenesis, but the mechanisms by which it is activated during this process are unclear. During myoblast differentiation, the promyogenic cell surface receptor Cdo binds to the p38alpha/beta pathway scaffold protein JLP and, via JLP, p38alpha/beta itself. We report that Cdo also interacts with Bnip-2, a protein ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 143 شماره
صفحات -
تاریخ انتشار 1998