Effect of ester chemical structure and peptide bond conformation in fragmentation pathways of differently metal cationized cyclodepsipeptides.

نویسندگان

  • Raja Banerjee
  • S Sudarslal
  • R S Ranganayaki
  • S Raghothama
چکیده

Fragmentation behavior of two classes of cyclodepsipeptides, isariins and isaridins, obtained from the fungus Isaria, was investigated in the presence of different metal ions using multistage tandem mass spectrometry (MS(n)) with collision induced dissociation (CID) and validated by NMR spectroscopy. During MS(n) process, both protonated and metal-cationized isariins generated product ions belonging to the identical 'b-ion' series, exhibiting initial backbone cleavage explicitly at the β-ester bond. Fragmentation behavior for the protonated and metal-cationized acyclic methyl ester derivative of isariins was very similar. On the contrary, isaridins during fragmentation produced ions belonging to the 'b' or/and the 'y' ion series depending on the nature of interacting metal ions, due to initial backbone cleavages at the α-ester linkage or/and at a specific amide linkage. Interestingly, independent of the nature of the interacting metal ions, the product ions formed from the acyclic methyl ester derivative of isaridins belonged only to the 'y-type'. Complementary NMR data showed that, while all metal ions were located around the β-ester group of isariins, the metal ion interacting sites varied across the backbone for isaridins. Combined MS and NMR data suggest that the different behavior in sequence specific charge-driven fragmentation of isariins and isaridins is predetermined because of the constituent β-hydroxy acid residue in isariins and the cis peptide bond in isaridins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infrared spectroscopy of cationized arginine in the gas phase: direct evidence for the transition from nonzwitterionic to zwitterionic structure.

The gas-phase structures of protonated and alkali metal cationized arginine (Arg) and arginine methyl ester (ArgOMe) are investigated with infrared spectroscopy and ab initio calculations. Infrared spectra, measured in the hydrogen-stretch region, provide compelling evidence that arginine changes from its nonzwitterionic to zwitterionic form with increasing metal ion size, with the transition i...

متن کامل

Synthesis of Chondramide A Analogues with Modified b-Tyrosine and Their Biological Evaluation

Cyclodepsipeptides comprise a unique class of secondary metabolides. They frequently contain unusual amino acids, like d-amino acids or N-methylated amino acids and hydroxy acids that typically originate from the polyketide pathway. Incorporation of the hydroxy acid results in an ester bond, explaining the term “depsi”. Many cyclodepsipeptides have been isolated from marine sponges and found to...

متن کامل

A Density Functional Theory Study of Structure of Phosphonic Acid

The molecular structure of the stable conformation of phosphonic acid in gas phase has beencomputed by employing complete geometry optimization in Density Functional Theory(DFT) methods. The methods used for calculations are B3LYP, BP86 and B3PW91 that havebeen studied in two series of basis sets: D95** and 6-31+G(d,p) for hydrogen and oxygenatoms; LANL2DZ for phosphorus. Bond lengths and angle...

متن کامل

Selectivity in fragmentation of N-methylacetamide after resonant K-shell excitation.

The fragmentation pattern of the peptide model system, N-methylacetamide, is investigated using ion time-of-flight (TOF) spectroscopy after resonant K-shell excitation. Corresponding near-edge X-ray absorption fine structure (NEXAFS) spectra recorded at high resolution at the C1s, N1s and O1s edges are presented. Analysis of the ion TOF data reveals a multitude of fragmentation channels and dis...

متن کامل

The effect of Environmental exposure to some chemical solvents on DPPC as important component of lung surfactant: an ab initio study

One of the main components of lung alveoli is surfactant. DPPC (Dipalmitolphosphatidylcholine) is thepredominant lipid component in lung surfactant that is responsible for lowering surface tension in alveoli in thisarticle. We used a very approximate model with computational method of Ab initio to describe the interactionsbetween DPPC as important component of lung surfactant and some chemical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 9 18  شماره 

صفحات  -

تاریخ انتشار 2011