Comparison of Conventional Chemotherapy, Stealth Liposomes and Temperature-Sensitive Liposomes in a Mathematical Model
نویسندگان
چکیده
Various liposomal drug carriers have been developed to overcome short plasma half-life and toxicity related side effects of chemotherapeutic agents. We developed a mathematical model to compare different liposome formulations of doxorubicin (DOX): conventional chemotherapy (Free-DOX), Stealth liposomes (Stealth-DOX), temperature sensitive liposomes (TSL) with intra-vascular triggered release (TSL-i), and TSL with extra-vascular triggered release (TSL-e). All formulations were administered as bolus at a dose of 9 mg/kg. For TSL, we assumed locally triggered release due to hyperthermia for 30 min. Drug concentrations were determined in systemic plasma, aggregate body tissue, cardiac tissue, tumor plasma, tumor interstitial space, and tumor cells. All compartments were assumed perfectly mixed, and represented by ordinary differential equations. Contribution of liposomal extravasation was negligible in the case of TSL-i, but was the major delivery mechanism for Stealth-DOX and for TSL-e. The dominant delivery mechanism for TSL-i was release within the tumor plasma compartment with subsequent tissue- and cell uptake of released DOX. Maximum intracellular tumor drug concentrations for Free-DOX, Stealth-DOX, TSL-i, and TSL-e were 3.4, 0.4, 100.6, and 15.9 µg/g, respectively. TSL-i and TSL-e allowed for high local tumor drug concentrations with reduced systemic exposure compared to Free-DOX. While Stealth-DOX resulted in high tumor tissue concentrations compared to Free-DOX, only a small fraction was bioavailable, resulting in little cellular uptake. Consistent with clinical data, Stealth-DOX resulted in similar tumor intracellular concentrations as Free-DOX, but with reduced systemic exposure. Optimal release time constants for maximum cellular uptake for Stealth-DOX, TSL-e, and TSL-i were 45 min, 11 min, and <3 s, respectively. Optimal release time constants were shorter for MDR cells, with ∼4 min for Stealth-DOX and for TSL-e. Tissue concentrations correlated well quantitatively with a prior in-vivo study. Mathematical models may thus allow optimization of drug delivery systems to achieve a better therapeutic index.
منابع مشابه
Preparation, in-vitro characterization and pharmacokinetic evaluation of Brij decorated doxorubicin liposomes as a potential nanocarrier for cancer therapy
The aim of current study was to investigate the effect of Brij decoration of liposomes on in vitro and in vivo characteristics of the nanocarriers. Two hydrophilic Brij surfactants (Brij 35 and Brij 78) with almost similar molecular weight but differing in acyl chain were incorporated into liposomal bilayers at two percentages (5% and 10%). Conventional liposomes (CL) containing egg phosphatidy...
متن کاملPreparation, in-vitro characterization and pharmacokinetic evaluation of Brij decorated doxorubicin liposomes as a potential nanocarrier for cancer therapy
The aim of current study was to investigate the effect of Brij decoration of liposomes on in vitro and in vivo characteristics of the nanocarriers. Two hydrophilic Brij surfactants (Brij 35 and Brij 78) with almost similar molecular weight but differing in acyl chain were incorporated into liposomal bilayers at two percentages (5% and 10%). Conventional liposomes (CL) containing egg phosphatidy...
متن کاملDevelopment and Validation of an Ion Chromatography Method for Quantification of Ammonium Ions in STEALTH® Liposomes
Ammonium sulfate is one of the subsidiary components in the stealth liposome structure. The ratio of ammonium ion bound to liposome sphere to ammonium ions outside the liposome plays an important role in drug delivery formulation; accordingly, in order to quantify the ammonium ion in the liposome structure, a rapid and sensitive method was validated using a conductivity detector. Through this m...
متن کاملPharmacokinetics of stealth versus conventional liposomes: effect of dose.
Liposomes which substantially avoid uptake into the mononuclear phagocyte system (MPS), termed Stealth liposomes, have recently been formulated (Allen, T.M. and Chonn, A., (1987) FEBS Lett. 223, 42-46). The pharmacokinetics of stealth liposomes as a function of liposome dose and a comparison to conventional liposome pharmacokinetics, was the subject of the present study. We have examined the ti...
متن کاملDoxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release.
Stealth liposomes can be used to extend the blood circulation time of encapsulated therapeutics. Inclusion of 2 molar % porphyrin-phospholipid (PoP) imparted optimal near infrared (NIR) light-triggered release of doxorubicin (Dox) from conventional sterically stabilized stealth liposomes. The type and amount of PoP affected drug loading, serum stability and drug release induced by NIR light. Ch...
متن کامل