Genetic Deletion of ACE2 Induces Vascular Dysfunction in C57BL/6 Mice: Role of Nitric Oxide Imbalance and Oxidative Stress.

نویسندگان

  • Luiza A Rabelo
  • Mihail Todiras
  • Valéria Nunes-Souza
  • Fatimunnisa Qadri
  • István András Szijártó
  • Maik Gollasch
  • Josef M Penninger
  • Michael Bader
  • Robson A Santos
  • Natalia Alenina
چکیده

Accumulating evidence indicates that angiotensin-converting enzyme 2 (ACE2) plays a critical role in cardiovascular homeostasis, and its altered expression is associated with major cardiac and vascular disorders. The aim of this study was to evaluate the regulation of vascular function and assess the vascular redox balance in ACE2-deficient (ACE2-/y) animals. Experiments were performed in 20-22 week-old C57BL/6 and ACE2-/y male mice. Evaluation of endothelium-dependent and -independent relaxation revealed an impairment of in vitro and in vivo vascular function in ACE2-/y mice. Drastic reduction in eNOS expression at both protein and mRNA levels, and a decrease in •NO concentrations were observed in aortas of ACE2-/y mice in comparison to controls. Consistently, these mice presented a lower plasma and urine nitrite concentration, confirming reduced •NO availability in ACE2-deficient animals. Lipid peroxidation was significantly increased and superoxide dismutase activity was decreased in aorta homogenates of ACE2-/y mice, indicating impaired antioxidant capacity. Taken together, our data indicate, that ACE2 regulates vascular function by modulating nitric oxide release and oxidative stress. In conclusion, we elucidate mechanisms by which ACE2 is involved in the maintenance of vascular homeostasis. Furthermore, these findings provide insights into the role of the renin-angiotensin system in both vascular and systemic redox balance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: a critical role of the angiotensin II/AT1 receptor axis.

RATIONALE Diabetic cardiovascular complications are reaching epidemic proportions. Angiotensin-converting enzyme-2 (ACE2) is a negative regulator of the renin-angiotensin system. We hypothesize that loss of ACE2 exacerbates cardiovascular complications induced by diabetes. OBJECTIVE To define the role of ACE2 in diabetic cardiovascular complications. METHODS AND RESULTS We used the well-val...

متن کامل

Oxidative Stress-Dependent Coronary Endothelial Dysfunction in Obese Mice

Obesity is involved in several cardiovascular diseases including coronary artery disease and endothelial dysfunction. Endothelial Endothelium vasodilator and vasoconstrictor agonists play a key role in regulation of vascular tone. In this study, we evaluated coronary vascular response in an 8 weeks diet-induced obese C57BL/6 mice model. Coronary perfusion pressure in response to acetylcholine i...

متن کامل

Soybean feeding improves vascular dysfunction and atte-nuates oxidative stress in streptozotocin-diabetic rats

Background and Objective: In this research, the effect of chronic dietary soybean aqueous extract on aortic reactivity of streptozotocin (STZ)-diabetic rats was investigated. Materials and Methods: STZ-diabetic rats were treated with soybean aqueous extract for two months after diabetes induction. Contractile reactivity to KCl and phenylephrine (PE) and relaxation response to acetylcholine (ACh...

متن کامل

ACE2 Deficiency Enhances Angiotensin II-Mediated Aortic Profilin-1 Expression, Inflammation and Peroxynitrite Production

Inflammation and oxidative stress play a crucial role in angiotensin (Ang) II-mediated vascular injury. Angiotensin-converting enzyme 2 (ACE2) has recently been identified as a specific Ang II-degrading enzyme but its role in vascular biology remains elusive. We hypothesized that loss of ACE2 would facilitate Ang II-mediated vascular inflammation and peroxynitrite production. 10-week wildtype (...

متن کامل

Role of vascular Kinin B1 and B2 receptors in endothelial nitric oxide metabolism

Kinin B(1) and B(2) receptors play an essential role in inflammatory process and cardiovascular homeostasis. The present study investigated the vascular reactivity and nitric oxide (NO) generation in the isolated mesenteric arteriolar bed from B(1) (B(1)(-/-)) and B(2) receptor (B(2)(-/-)) knockout mice. Endothelial-dependent relaxation was significantly decreased in arterioles from both B(1)(-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PloS one

دوره 11 4  شماره 

صفحات  -

تاریخ انتشار 2016