Drosophila and vertebrate casein kinase Idelta exhibits evolutionary conservation of circadian function.
نویسندگان
چکیده
Mutations lowering the kinase activity of Drosophila Doubletime (DBT) and vertebrate casein kinase Iepsilon/delta (CKIepsilon/delta) produce long-period, short-period, and arrhythmic circadian rhythms. Since most ckI short-period mutants have been isolated in mammals, while the long-period mutants have been found mostly in Drosophila, lowered kinase activity may have opposite consequences in flies and vertebrates, because of differences between the kinases or their circadian mechanisms. However, the results of this article establish that the Drosophila dbt mutations have similar effects on period (PER) protein phosphorylation by the fly and vertebrate enzymes in vitro and that Drosophila DBT has an inhibitory C-terminal domain and exhibits autophosphorylation, as does vertebrate CKIepsilon/delta. Moreover, expression of either Drosophila DBT or the vertebrate CKIdelta kinase carrying the Drosophila dbt(S) or vertebrate tau mutations in all circadian cells leads to short-period circadian rhythms. By contrast, vertebrate CKIdelta carrying the dbt(L) mutation does not lengthen circadian rhythms, while Drosophila DBT(L) does. Different effects of the dbt(S) and tau mutations on the oscillations of PER phosphorylation suggest that the mutations shorten the circadian period differently. The results demonstrate a high degree of evolutionary conservation of fly and vertebrate CKIdelta and of the functions affected by their period-shortening mutations.
منابع مشابه
Drosophila and vertebrate casein kinase I δ exhibit evolutionary conservation of circadian function
متن کامل
Ribosomal s6 kinase cooperates with casein kinase 2 to modulate the Drosophila circadian molecular oscillator.
There is a universal requirement for post-translational regulatory mechanisms in circadian clock systems. Previous work in Drosophila has identified several kinases, phosphatases, and an E3 ligase that are critical for determining the nuclear translocation and/or stability of clock proteins. The present study evaluated the function of p90 ribosomal S6 kinase (RSK) in the Drosophila circadian sy...
متن کاملIn vivo circadian function of casein kinase 2 phosphorylation sites in Drosophila PERIOD.
Phosphorylation plays a key role in the precise timing of circadian clocks. Daily rhythms of phosphorylation of the Drosophila circadian clock component PERIOD (PER) were first described more than a decade ago, yet little is known about their phosphorylation sites and their function in circadian behavior. Here we show that serines 151 and 153 in PER are required for robust in vitro phosphorylat...
متن کاملThe phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock.
A common feature of animal circadian clocks is the progressive phosphorylation of PERIOD (PER) proteins, which is highly dependent on casein kinase Idelta/epsilon (CKIdelta/epsilon; termed DOUBLETIME [DBT] in Drosophila) and ultimately leads to the rapid degradation of hyperphosphorylated isoforms via a mechanism involving the F-box protein, beta-TrCP (SLIMB in Drosophila). Here we use the Dros...
متن کاملDrosophila Protein Kinase CK2: Genetics, Regulatory Complexity and Emerging Roles during Development
CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a well-known oncogenic kinase that regulates vital cell autonomous functions and animal development. Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing hithert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 181 1 شماره
صفحات -
تاریخ انتشار 2009