Infinitude of Elliptic Carmichael Numbers
نویسندگان
چکیده
In 1987, Gordon gave an integer primality condition similar to the familiar test based on Fermat’s little theorem, but based instead on the arithmetic of elliptic curves with complex multiplication. We prove the existence of infinitely many composite numbers simultaneously passing all elliptic curve primality tests assuming a weak form of a standard conjecture on the bound on the least prime in (special) arithmetic progressions. Our results are somewhat more general than both the 1999 dissertation of the first author (written under the direction of the third author) and a 2010 paper on Carmichael numbers in a residue class written by Banks and the second author.
منابع مشابه
There are Infinitely Many Perrin Pseudoprimes
This paper proves the existence of infinitely many Perrin pseudoprimes, as conjectured by Adams and Shanks in 1982. The theorem proven covers a general class of pseudoprimes based on recurrence sequences. The result uses ingredients of the proof of the infinitude of Carmichael numbers, along with zero-density estimates for Hecke L-functions.
متن کاملOn Fibonacci numbers which are elliptic Carmichael
Here, we show that if E is a CM elliptic curve with CM field different from Q( √ −1), then the set of n for which the nth Fibonacci number Fn is elliptic Carmichael for E is of asymptotic density zero.
متن کاملFrom Euclid to Present: A Collection of Proofs regarding the Infinitude of Primes
Prime numbers are considered the basic building blocks of the counting numbers, and thus a natural question is: Are there infinitely many primes? Around 300BC, Euclid demonstrated, with a proof by contradiction, that infinitely many prime numbers exist. Since his work, the development of various fields of mathematics has produced subsequent proofs of the infinitude of primes. Each new and uniqu...
متن کاملSUPERSINGULAR PRIMES FOR POINTS ON X0(p)/wp
For small odd primes p, we prove that most of the rational points on the modular curve X0(p)/wp parametrize pairs of elliptic curves having infinitely many supersingular primes. This result extends the class of elliptic curves for which the infinitude of supersingular primes is known. We give concrete examples illustrating how these techniques can be explicitly used to construct supersingular p...
متن کاملExperimental Investigation of wake on an elliptic cylinder in the presence of tripping wire
In this research, the behavior and characteristics of the wake of flow in an elliptic cylinder with zero angle of attack in the presence of a tripping wire were investigated experimentally. For this purpose, the used an Aluminum cylinder with an elliptical cross section of the major and minor axis of 42.4 mm and 21.2 mm, respectively, and of the height of 390 mm. The cylinder model was examined...
متن کامل