Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations.
نویسندگان
چکیده
Improved production costs will accelerate commercialization of polyhydroxyalkanoate (PHA) polymer and PHA-based products. Plant oils are considered favorable feedstocks, due to their high carbon content and relatively low price compared to sugars and other refined carbon feedstocks. Different PHA production strategies were compared using a recombinant strain of Ralstonia eutropha that produces high amounts of P(HB-co-HHx) when grown on plant oils. This R. eutropha strain was grown to high cell densities using batch, extended batch, and fed batch fermentation strategies, in which PHA accumulation was triggered by nitrogen limitation. While extended batch culture produced more biomass and PHA than batch culture, fed batch cultivation was shown to produce the highest levels of biomass and PHA. The highest titer achieved was over 139 g/L cell dry weight (CDW) of biomass with 74% of CDW as PHA containing 19 mol% HHx. Our data suggest that the fermentation process is scalable with a space time yield (STY) better than 1 g PHA/L/h. The achieved biomass concentration and PHA yield are among the highest reported for the fermentation of recombinant R. eutropha strains producing P(HB-co-HHx).
منابع مشابه
Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains.
The polyhydroxyalkanoate (PHA) copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] has been shown to have potential to serve as a commercial bioplastic. Synthesis of P(HB-co-HHx) from plant oil has been demonstrated with recombinant Ralstonia eutropha strains expressing heterologous PHA synthases capable of incorporating HB and HHx into the polymer. With these strains, howeve...
متن کاملARTICLE Production of Poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) by Ralstonia eutropha in High Cell Density Palm Oil Fermentations
Improved production costs will accelerate commercialization of polyhydroxyalkanoate (PHA) polymer and PHA-based products. Plant oils are considered favorable feedstocks, due to their high carbon content and relatively low price compared to sugars and other refined carbon feedstocks. Different PHA production strategies were compared using a recombinant strain of Ralstonia eutropha that produces ...
متن کاملFormation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha.
The acetoacetyl-CoA reductase and the polyhydroxyalkanoate (PHA) synthase from Ralstonia eutropha (formerly Alcaligenes eutrophus) were expressed in Escherichia coli, Klebsiella aerogenes, and PHA-negative mutants of R. eutropha and Pseudomonas putida. While expression in E. coli strains resulted in the accumulation of poly(3-hydroxybutyrate) [PHB], strains of R. eutropha, P. putida and K. aero...
متن کاملPRODUCTION OF MEDIUM CHAIN LENGTH POLYHYDROXYALKANOATES FROM PALMITIC ACID USING Ralstonia eutropha BY FED BATCH CULTURE
Polyhydroxyalkanoates (PHA’s) are carbon and energy storage compounds which accumulate intracellulary as granules in certain bacteria during unbalanced growth and in the presence of an excess carbon source. PHAs were well studied regarding their promising applications, physical, chemical and biological properties. PHAs are biodegradable, biocompatible, have good material properties, renewable a...
متن کاملProduction of P(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate) terpolymers using a chimeric PHA synthase in recombinant Ralstonia eutropha and Pseudomonas putida.
Recombinant strains of Ralstonia eutropha and Pseudomonas putida harboring a chimeric polyhydroxyalkanoate (PHA) synthase, which consisted of PHA synthases of Aeromonas caviae and R. eutropha, produced 3-hydroxybutyrate (3HB)-based PHA copolymers comprised of 3-hydroxyhexanoate and 3-hydroxyoctanoate units from dodecanoate (87-97 mol % 3HB), indicating that the chimeric PHA synthase possesses d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 109 1 شماره
صفحات -
تاریخ انتشار 2012