cAMP signal transduction cascade, a novel pathway for the regulation of endothelial nitric oxide production in coronary blood vessels.

نویسندگان

  • X Zhang
  • T H Hintze
چکیده

The aim of this study was to determine whether cAMP signal transduction plays a role in the regulation of endothelial nitric oxide (NO) production. Canine coronary blood vessels were isolated, and nitrite, the hydration product of NO, from these vessels was quantified by using the Griess reaction. Forskolin (10(-4) mol/L), 8-bromo-cAMP (10(-2) mol/L), or isoproterenol (10(-4) mol/L) significantly increased nitrite release to 168+/-10, 162+/-13, or 149+/-13 pmol/mg, respectively, from isolated coronary microvessels (all P<0.05; control, 86+/-3 pmol/mg). Adrenomedullin and calcitonin gene-related peptide (CGRP), both potent vasodilator peptides, also increased coronary microvascular nitrite production. N(omega)-nitro-L-arginine methyl ester, a competitive inhibitor of NO synthase, or Rp-cAMP, a protein kinase A inhibitor, markedly blocked the nitrite release induced by these agents. Forskolin and adrenomedullin also potentiated coronary NO production induced by bradykinin. In large coronary arteries, removal of the endothelium eliminated nitrite production to both forskolin and acetylcholine. Our data demonstrate that stimulation of cAMP signal transduction can substantially increase coronary NO production, indicating that there is a cAMP-mediated, endothelial NO-forming system in coronary blood vessels. Because the cAMP signal cascade can be activated by CGRP or adrenomedullin and enhance kinin-mediated nitrite production, the cAMP-NO pathway may play an important role in the regulation of cardiovascular function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Role of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit

Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...

متن کامل

cAMP signal transduction induces eNOS activation by promoting PKB phosphorylation.

The objective of this study was to determine whether activation of protein kinase B (PKB) is involved in the production of nitric oxide (NO) induced by cAMP signal transduction. Mongrel dogs were used for this study. Coronary microvessels were isolated from the left ventricular free wall of these dog hearts. Forskolin (an activator of adenylyl cyclase that increases intracellular cAMP level) an...

متن کامل

Regulation of retinal angiogenesis by endothelial nitric oxide synthase signaling pathway

Angiogenesis plays an essential role in embryo development, tissue repair, inflammatory diseases, and tumor growth. In the present study, we showed that endothelial nitric oxide synthase (eNOS) regulates retinal angiogenesis. Mice that lack eNOS showed growth retardation, and retinal vessel development was significantly delayed. In addition, the number of tip cells and filopodia length were sig...

متن کامل

cAMP signal transduction, a potential compensatory pathway for coronary endothelial NO production after heart failure.

OBJECTIVE This study investigated whether cAMP signal transduction regulates coronary microvascular NO production after heart failure (HF), a state in which endothelial NO synthase (eNOS) is downregulated. METHODS AND RESULTS Myocardial microvessels were isolated. Nitrite, the hydration product of NO, from these vessels was quantified by using the Griess reaction. Forskolin (10(-4) mol/L), 8-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2001