Organoarsenic resistance and bioremoval of Acidithiobacillus ferrooxidans.

نویسندگان

  • Lei Yan
  • Huanhuan Yin
  • Shuang Zhang
  • Jiangong Duan
  • Yongquan Li
  • Peng Chen
  • Hongyu Li
چکیده

The tolerance and bioremoval of dimethylarsinic acid (DMA(V)) by Acidithiobacillus ferrooxidans (A. ferrooxidans) were investigated here. The inhibitory concentration (IC) of DMA(V) was determined for A. ferrooxidans. The effects of various parameters such as pH, contact time, initial DMA(V) concentration, biosorbent dose and temperature were systematically examined to study the biosorption processes. Results indicated that Langmuir model fitted better than Freundlich model to the equilibrium data. Analysis of kinetic data showed that the biosorption processes of DMA(V) involved pseudo-second-order kinetics. Thermodynamic analysis showed that the biosorption of DMA(V) onto A. ferrooxidans was feasible, spontaneous, endothermic and chemisorptive under examined conditions. Fourier transform infrared spectroscopy (FTIR) showed the involvement of -OH, -NH and -SO(3) groups in the biosorption process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Investigation the Effect of Acidithiobacillus Ferrooxidans Bacteria on Biomachining of Titanium Alloy and Copper

Recent advances in technology have increased the necessity of using components with Micro and Nano dimensions. In recent years, the use of bacteria as a renewable tool has hopeful applications in producing different work-pieces. In this study, the effect of Acidithiobacillus Ferrooxidans (A.F) on Vt20 (Titanium alloy) and Cu were investigated. The results illustrated that in the medium of the A...

متن کامل

A study of Acidithiobacillus ferrooxidans DSMZ 583 Adaptation to Heavy Metals

In this study the ability of Acidithiobacillus ferrooxidans, with regard to the biorecovery of heavy metals inshake flask has been investigated. Adaptation experiments with the single metal ions Ni, Co, V, Mo, W anda mixture of the first four metal ions in the medium was developed through serial sub-culturing. Adaptationshowed that A. ferrooxidans could tolerate up to 2.3 g/l ...

متن کامل

Ex-situ Bioremediation of U(VI) from Contaminated Mine Water Using Acidithiobacillus ferrooxidans Strains

The ex-situ bioremoval of U(VI) from contaminated water using Acidithiobacillus ferrooxidans strain 8455 and 13538 was studied under a range of pH and uranium concentrations. The effect of pH on the growth of bacteria was evaluated across the range 1.5–4.5 pH units. The respiration rate of At. ferrooxidans at different U(VI) concentrations was quantified as a measure of the rate of metabolic ac...

متن کامل

Comparative proteomics of Acidithiobacillus ferrooxidans grown in the presence and absence of uranium.

Acidithiobacillus ferrooxidans is an acidophile that thrives in metal-contaminated environments and tolerates high levels of uranium. To gain a better understanding of the processes involved in U(VI) resistance, comparative proteomics was used. The proteome of A. ferrooxidans was grown in the presence and absence of 0.5 mM U(VI); expression of 17 proteins was upregulated and one was downregulat...

متن کامل

New copper resistance determinants in the extremophile acidithiobacillus ferrooxidans: a quantitative proteomic analysis.

Acidithiobacillus ferrooxidans is an extremophilic bacterium used in biomining processes to recover metals. The presence in A. ferrooxidans ATCC 23270 of canonical copper resistance determinants does not entirely explain the extremely high copper concentrations this microorganism is able to stand, suggesting the existence of other efficient copper resistance mechanisms. New possible copper resi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 101 16  شماره 

صفحات  -

تاریخ انتشار 2010