Design of Three-Dimensional Scaffolds with Tunable Matrix Stiffness for Directing Stem Cell Lineage Specification: An In Silico Study

نویسندگان

  • Sanjairaj Vijayavenkataraman
  • Zhang Shuo
  • Jerry Y. H. Fuh
  • Wen Feng Lu
چکیده

Tissue engineering is a multi-disciplinary area of research bringing together the fields of engineering and life sciences with the aim of fabricating tissue constructs aiding in the regeneration of damaged tissues and organs. Scaffolds play a key role in tissue engineering, acting as the templates for tissue regeneration and guiding the growth of new tissue. The use of stem cells in tissue engineering and regenerative medicine becomes indispensable, especially for applications involving successful long-term restoration of continuously self-renewing tissues, such as skin. The differentiation of stem cells is controlled by a number of cues, of which the nature of the substrate and its innate stiffness plays a vital role in stem cell fate determination. By tuning the substrate stiffness, the differentiation of stem cells can be directed to the desired lineage. Many studies on the effect of substrate stiffness on stem cell differentiation has been reported, but most of those studies are conducted with two-dimensional (2D) substrates. However, the native in vivo tissue microenvironment is three-dimensional (3D) and life science researchers are moving towards 3D cell cultures. Porous 3D scaffolds are widely used by the researchers for 3D cell culture and the properties of such scaffolds affects the cell attachment, proliferation, and differentiation. To this end, the design of porous scaffolds directly influences the stem cell fate determination. There exists a need to have 3D scaffolds with tunable stiffness for directing the differentiation of stem cells into the desired lineage. Given the limited number of biomaterials with all the desired properties, the design of the scaffolds themselves could be used to tune the matrix stiffness. This paper is an in silico study, investigating the effect of various scaffold parameter, namely fiber width, porosity, number of unit cells per layer, number of layers, and material selection, on the matrix stiffness, thereby offering a guideline for design of porous tissue engineering scaffolds with tunable matrix stiffness for directing stem cell lineage specification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decellularized kidney in the presence of chondroitin sulfate as a natural 3D scaffold for stem cells

Objective(s): Use of biological scaffolds and automating the cells directing process with materials such as growth factors and glycosaminoglycans (GAGs) in a certain path may have beneficial effects in tissue engineering and regenerative medicine in future. In this research, chondroitin sulfate sodium was used for impregnation of the scaffolds. It is a critical component in extracellular matrix...

متن کامل

The influence of scaffold elasticity on germ layer specification of human embryonic stem cells.

Mechanical forces are critical to embryogenesis, specifically, in the lineage-specification gastrulation phase, whereupon the embryo is transformed from a simple spherical ball of cells to a multi-layered organism, containing properly organized endoderm, mesoderm, and ectoderm germ layers. Several reports have proposed that such directed and coordinated movements of large cell collectives are d...

متن کامل

Tissue Engineered Scaffolds in Regenerative Medicine

Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...

متن کامل

بررسی میزان بقاء و رشد سلول های بنیادی CD93 بر روی داربست سه بعدی زیست تخریب پلی کاپرولاکتون- ژلاتین

Background and purpose: Application of three-dimensional scaffolds with the ability to simulate a three-dimensional in vivo environment has opened new perspective on targeted differentiation and therapeutic use of stem cells. In this study we examined the compatibility of CD93 stem cells with biodegradable pcl- gelatin scaffold. Materials and methods: In this experimental study, three-dimens...

متن کامل

Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds.

In stem cell biology, focus has recently turned to the influence of the intrinsic properties of the extracellular matrix (ECM), such as structural, composition and elasticity, on stem cell differentiation. Utilising collagen-glycosaminoglycan (CG) scaffolds as an analogue of the ECM, this study set out to determine the effect of scaffold stiffness and composition on naive mesenchymal stem cell ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017