On the Convergence Speed of MDL Predictions for Bernoulli Sequences
نویسندگان
چکیده
We consider the Minimum Description Length principle for online sequence prediction. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is bounded, implying convergence with probability one, and (b) it additionally specifies a rate of convergence. Generally, for MDL only exponential loss bounds hold, as opposed to the linear bounds for a Bayes mixture. We show that this is even the case if the model class contains only Bernoulli distributions. We derive a new upper bound on the prediction error for countable Bernoulli classes. This implies a small bound (comparable to the one for Bayes mixtures) for certain important model classes. The results apply to many Machine Learning tasks including classification and hypothesis testing. We provide arguments that our theorems generalize to countable classes of i.i.d. models.
منابع مشابه
Title MDL convergence speed for Bernoulli sequences
The Minimum Description Length principle for online sequence estimateion/prediction in a proper learning setup is studied. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying convergence with probability one, and (b) it additionally specifies the convergence speed. For M...
متن کاملMDL Convergence Speed for Bernoulli Sequences
The Minimum Description Length principle for online sequence estimation/prediction in a proper learning setup is studied. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying convergence with probability one, and (b) it additionally specifies the convergence speed. For MD...
متن کاملMDL Convergence Speed for Bernoulli Sequences ∗ Jan Poland and Marcus Hutter
The Minimum Description Length principle for online sequence estimation/prediction in a proper learning setup is studied. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying convergence with probability one, and (b) it additionally specifies the convergence speed. For MD...
متن کاملMDL Convergence Speed for Bernoulli Sequences ∗ Jan Poland and Marcus
The Minimum Description Length principle for online sequence estimateion/prediction in a proper learning setup is studied. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying convergence with probability one, and (b) it additionally specifies the convergence speed. For M...
متن کاملConvergence of Discrete MDL for Sequential Prediction
We study the properties of the Minimum Description Length principle for sequence prediction, considering a two-part MDL estimator which is chosen from a countable class of models. This applies in particular to the important case of universal sequence prediction, where the model class corresponds to all algorithms for some fixed universal Turing machine (this correspondence is by enumerable semi...
متن کامل