The HOOK region of voltage-gated Ca2+ channel β subunits senses and transmits PIP2 signals to the gate
نویسندگان
چکیده
The β subunit of voltage-gated Ca2+ (CaV) channels plays an important role in regulating gating of the α1 pore-forming subunit and its regulation by phosphatidylinositol 4,5-bisphosphate (PIP2). Subcellular localization of the CaV β subunit is critical for this effect; N-terminal-dependent membrane targeting of the β subunit slows inactivation and decreases PIP2 sensitivity. Here, we provide evidence that the HOOK region of the β subunit plays an important role in the regulation of CaV biophysics. Based on amino acid composition, we broadly divide the HOOK region into three domains: S (polyserine), A (polyacidic), and B (polybasic). We show that a β subunit containing only its A domain in the HOOK region increases inactivation kinetics and channel inhibition by PIP2 depletion, whereas a β subunit with only a B domain decreases these responses. When both the A and B domains are deleted, or when the entire HOOK region is deleted, the responses are elevated. Using a peptide-to-liposome binding assay and confocal microscopy, we find that the B domain of the HOOK region directly interacts with anionic phospholipids via polybasic and two hydrophobic Phe residues. The β2c-short subunit, which lacks an A domain and contains fewer basic amino acids and no Phe residues in the B domain, neither associates with phospholipids nor affects channel gating dynamically. Together, our data suggest that the flexible HOOK region of the β subunit acts as an important regulator of CaV channel gating via dynamic electrostatic and hydrophobic interaction with the plasma membrane.
منابع مشابه
Transduction of voltage and Ca2+ signals by Slo1 BK channels.
Large-conductance Ca2+ -and voltage-gated K+ channels are activated by an increase in intracellular Ca2+ concentration and/or depolarization. The channel activation mechanism is well described by an allosteric model encompassing the gate, voltage sensors, and Ca2+ sensors, and the model is an excellent framework to understand the influences of auxiliary β and γ subunits and regulatory factors s...
متن کاملMembrane-localized β-subunits alter the PIP2 regulation of high-voltage activated Ca channels
The β-subunits of voltage-gated Ca (CaV) channels regulate the functional expression and several biophysical properties of highvoltage–activated CaV channels. We find that CaV β-subunits also determine channel regulation by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). When CaV1.3, -2.1, or -2.2 channels are cotransfected with the β3-subunit, a cytosolic protein, they ...
متن کاملCa 2 + Channel Regulation by a Conserved β Subunit Domain
The β subunit is a cytoplasmic component that normalizes the current amplitude, kinetics, and voltage dependence of voltage-gated Ca2+ channels. Here, we identify a 30 amino acid domain of the β subunit that is sufficient to induce a stimulation and shift in the voltage dependence of activation of the Ca2+ channel currents. This domain is located at the amino terminus of the second region of hi...
متن کاملKCNE3 acts by promoting voltage sensor activation in KCNQ1.
KCNE β-subunits assemble with and modulate the properties of voltage-gated K(+) channels. In the colon, stomach, and kidney, KCNE3 coassembles with the α-subunit KCNQ1 to form K(+) channels important for K(+) and Cl(-) secretion that appear to be voltage-independent. How KCNE3 subunits turn voltage-gated KCNQ1 channels into apparent voltage-independent KCNQ1/KCNE3 channels is not completely und...
متن کاملVoltage-dependent regulation of CaV2.2 channels by Gq-coupled receptor is facilitated by membrane-localized β subunit
G protein-coupled receptors (GPCRs) signal through molecular messengers, such as Gβγ, Ca(2+), and phosphatidylinositol 4,5-bisphosphate (PIP2), to modulate N-type voltage-gated Ca(2+) (CaV2.2) channels, playing a crucial role in regulating synaptic transmission. However, the cellular pathways through which GqPCRs inhibit CaV2.2 channel current are not completely understood. Here, we report that...
متن کامل