Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea.

نویسندگان

  • Phyllis Lam
  • Marlene M Jensen
  • Gaute Lavik
  • Daniel F McGinnis
  • Beat Müller
  • Carsten J Schubert
  • Rudolf Amann
  • Bo Thamdrup
  • Marcel M M Kuypers
چکیده

Active expression of putative ammonia monooxygenase gene subunit A (amoA) of marine group I Crenarchaeota has been detected in the Black Sea water column. It reached its maximum, as quantified by reverse-transcription quantitative PCR, exactly at the nitrate maximum or the nitrification zone modeled in the lower oxic zone. Crenarchaeal amoA expression could explain 74.5% of the nitrite variations in the lower oxic zone. In comparison, amoA expression by gamma-proteobacterial ammonia-oxidizing bacteria (AOB) showed two distinct maxima, one in the modeled nitrification zone and one in the suboxic zone. Neither the amoA expression by crenarchaea nor that by beta-proteobacterial AOB was significantly elevated in this latter zone. Nitrification in the suboxic zone, most likely microaerobic in nature, was verified by (15)NO(2)(-) and (15)N(15)N production in (15)NH(4)(+) incubations with no measurable oxygen. It provided a direct local source of nitrite for anammox in the suboxic zone. Both ammonia-oxidizing crenarchaea and gamma-proteobacterial AOB were important nitrifiers in the Black Sea and were likely coupled to anammox in indirect and direct manners respectively. Each process supplied about half of the nitrite required by anammox, based on (15)N-incubation experiments and modeled calculations. Because anammox is a major nitrogen loss in marine suboxic waters, such nitrification-anammox coupling potentially occurring also in oceanic oxygen minimum zones would act as a short circuit connecting regenerated ammonium to direct nitrogen loss, thus reducing the presumed direct contribution from deep-sea nitrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea)

Microbial processes such as nitrification and anaerobic ammonium oxidation (anammox) are important for nitrogen cycling in marine sediments. Seasonal variations of archaeal and bacterial ammonia oxidizers (AOA and AOB) and anammox bacteria, as well as the environmental factors affecting these groups, are not well studied. We have examined the seasonal and depth distribution of the abundance and...

متن کامل

Seasonal variation in nitrification and nitrate- reduction pathways in coastal sediments in the Gulf of Finland, Baltic Sea

The Baltic Sea is one of the most eutrophic marine areas in the world. The role of nitrogen as a eutrophicating nutrient in the Baltic Sea has remained controversial owing to a lack of understanding of nitrogen cycling in the area. We investigated the seasonal variation in sediment nitrification, denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to amm...

متن کامل

Probing nitrogen metabolism in the redox gradient of the Black Sea.

T he Black Sea, earth’s largest anoxic water body, serves as a model system for studies of marine chemistry and biology. The article by Lam et al. (1) in this issue of PNAS describes a new approach to assessing the activity of Black Sea nitrifying bacteria and archaea that are globally important in nitrogen metabolism. The Black Sea was formed after the retreat of the glaciers in the most recen...

متن کامل

Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms.

Ammonia oxidation, as the first step in the nitrification process, plays a central role in the global cycling of nitrogen. Although bacteria are traditionally considered to be responsible for ammonia oxidation, a role for archaea has been suggested by data from metagenomic studies and by the isolation of a marine, autotrophic, ammonia-oxidizing, non-thermophilic crenarchaeon. Evidence for ammon...

متن کامل

Isotopic overprinting of nitrification on denitrification as a ubiquitous and unifying feature of environmental nitrogen cycling.

Natural abundance nitrogen and oxygen isotopes of nitrate (δ15NNO3 and δ18ONO3) provide an important tool for evaluating sources and transformations of natural and contaminant nitrate (NO3-) in the environment. Nevertheless, conventional interpretations of NO3- isotope distributions appear at odds with patterns emerging from studies of nitrifying and denitrifying bacterial cultures. To resolve ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 17  شماره 

صفحات  -

تاریخ انتشار 2007