Genetics of polynomials over local fields
نویسندگان
چکیده
Let (K, v) be a discrete valued field with valuation ring O, and let Ov be the completion of O with respect to the v-adic topology. In this paper we discuss the advantages of manipulating polynomials in Ov [x] on a computer by means of OM representations of prime (monic and irreducible) polynomials. An OM representation supports discrete data characterizing the Okutsu equivalence class of the prime polynomial. These discrete parameters are a kind of DNA sequence common to all individuals in the same Okutsu class, and they contain relevant arithmetic information about the polynomial and the extension of Kv that it determines.
منابع مشابه
Factoring Polynomials over Local Fields II
We present an algorithm for factoring polynomials over local fields, in which the Montes algorithm is combined with elements from Zassenhaus Round Four algorithm. This algorithm avoids the computation of characteristic polynomials and the resulting precision problems that occur in the Round Four algorithm.
متن کاملFactoring polynomials over Z4 and over certain Galois rings
It is known that univariate polynomials over finite local rings factor uniquely into primary pairwise coprime factors. Primary polynomials are not necessarily irreducible. Here we describe a factorisation into irreducible factors for primary polynomials over Z4 and more generally over Galois rings of characteristic p. An algorithm is also given. As an application, we factor x − 1 and x + 1 over...
متن کاملConstructing Splitting Fields of Polynomials over Local Fields
We present an algorithm that finds the splitting field of a polynomial over a local field. Our algorithm is an OM algorithm modified for this task.
متن کامل