In Vivo Optical Imaging of Interscapular Brown Adipose Tissue with 18F-FDG via Cerenkov Luminescence Imaging
نویسندگان
چکیده
OBJECTIVE Brown adipose tissue (BAT), a specialized tissue for thermogenesis, plays important roles for metabolism and energy expenditure. Recent studies validated BAT's presence in human adults, making it an important re-emerging target for various pathologies. During this validation, PET images with (18)F-FDG showed significant uptake of (18)F-FDG by BAT under certain conditions. Here, we demonstrated that Cerenkov luminescence imaging (CLI) using (18)F-FDG could be utilized for in vivo optical imaging of BAT in mice. METHODS Mice were injected with (18)F-FDG and imaged 60 minutes later with open filter and 2 minute acquisition. In vivo activation of BAT was performed by norepinephrine and cold treatment under isoflurane or ketamine anesthesia. Spectral unmixing and 3D imaging reconstruction were conducted with multiple-filter CLI images. RESULTS 1) It was feasible to use CLI with (18)F-FDG to image interscapular BAT in mice, with the majority of the signal (>85%) at the interscapular site originating from BAT; 2) The method was reliable because excellent correlations between in vivo CLI, ex vivo CLI, and ex vivo radioactivity were observed; 3) CLI could be used for monitoring BAT activation under different conditions; 4) CLI signals from the group under short-term isoflurane anesthesia were significantly higher than that from the group under long-term anesthesia; 5) The CLI spectrum of (18)F-FDG with a peak at 640 nm in BAT after spectral unmixing reflected the actual context of BAT; 6) Finally 3D reconstruction images showed excellent correlation between the source of the light signal and the location and physical shape of BAT. CONCLUSION CLI with (18)F-FDG is a feasible and reliable method for imaging BAT in mice. Compared to PET imaging, CLI is significantly cheaper, faster for 2D planar imaging and easier to use. We believe that this method could be used as an important tool for researchers investigating BAT.
منابع مشابه
Fluorescence Imaging of Interscapular Brown Adipose Tissue in Living Mice.
Brown adipose tissue (BAT) plays a key role in energy expenditure and heat generation and is a promising target for diagnosing and treating obesity, diabetes and related metabolism disorders. While several nuclear and magnetic resonance imaging methods are established for detecting human BAT, there are no convenient protocols for high throughput imaging of BAT in small animal models. Here we di...
متن کاملIntraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study.
UNLABELLED Cerenkov luminescence imaging (CLI) is an emerging new molecular imaging modality that is relatively inexpensive, easy to use, and has high throughput. CLI can image clinically available PET and SPECT probes using optical instrumentation. Cerenkov luminescence endoscopy (CLE) is one of the most intriguing applications that promise potential clinical translation. We developed a protot...
متن کاملIterative Determination of Clinical Beam Phase Space From Dose Measurements
Purpose/Objective(s): Real-time feedback, identifying both tumor location and radiation dose,would be beneficial during interventional procedures such as glioma brain tumor resection.We investigated the feasibility of using a fiber-based Cerenkov imaging system to detect tumor margins in the surgical resection cavity invivo. The potential benefit of a Cerenkov imaging is its ability to image tu...
متن کاملEndoscopic imaging of Cerenkov luminescence
We demonstrate feasibility of endoscopic imaging of Cerenkov light originated when charged nuclear particles, emitted from radionuclides, travel through a biological tissue of living subjects at superluminal velocity. The endoscopy imaging system consists of conventional optical fiber bundle/ clinical endoscopes, an optical imaging lens system, and a sensitive low-noise charge coupled device (C...
متن کاملQuantitative assessment of brown adipose tissue metabolic activity and volume using 18F-FDG PET/CT and β3-adrenergic receptor activation
BACKGROUND Brown adipose tissue [BAT] metabolism in vivo is vital for the development of novel strategies in combating obesity and diabetes. Currently, BAT is activated at low temperatures and measured using 2-deoxy-2-18F-fluoro-D-glucose [18F-FDG] positron-emission tomography [PET]. We report the use of β3-adrenergic receptor-mediated activation of BAT at ambient temperatures using (R, R)-5-[2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013