Surround suppression explained by long-range recruitment of local competition, in a columnar V1 model
نویسندگان
چکیده
Although neurons in columns of visual cortex of adult carnivores and primates share similar orientation tuning preferences, responses of nearby neurons are surprisingly sparse and temporally uncorrelated, especially in response to complex visual scenes. The mechanisms underlying this counter-intuitive combination of response properties are still unknown. Here we present a computational model of columnar visual cortex which explains experimentally observed integration of complex features across the visual field, and which is consistent with anatomical and physiological profiles of cortical excitation and inhibition. In this model, sparse local excitatory connections within columns, coupled with strong unspecific local inhibition and functionallyspecific long-range excitatory connections across columns, give rise to competitive dynamics that reproduce experimental observations. Our results explain surround modulation of responses to simple and complex visual stimuli, including reduced correlation of nearby excitatory neurons, increased excitatory response selectivity, increased inhibitory selectivity, and complex orientation-tuning of surround modulation.
منابع مشابه
Surround suppression and facilitation in the fovea: very long-range spatial interactions in contrast perception.
Surround modulation of perceived contrast has been almost exclusively studied in short-range conditions, i.e., in situations where a tiny gap, at most, separates center from surround. Existing long-range studies suggest that suppression extends to 12-cycle distance, whereas facilitation of perceived contrast is suggested to arise from visual field regions enclosing the center. In V1 neurons, ho...
متن کاملThe role of feedback in shaping the extra-classical receptive field of cortical neurons: a recurrent network model.
The responses of neurons in sensory cortices are affected by the spatial context within which stimuli are embedded. In the primary visual cortex (V1), orientation-selective responses to stimuli in the receptive field (RF) center are suppressed by similarly oriented stimuli in the RF surround. Surround suppression, a likely neural correlate of perceptual figure-ground segregation, is traditional...
متن کاملResponse facilitation from the "suppressive" receptive field surround of macaque V1 neurons.
In primary visual cortex (V1), neuronal responses to optimally oriented stimuli in the receptive field (RF) center are usually suppressed by iso-oriented stimuli in the RF surround. The mechanisms and pathways giving rise to surround modulation, a possible neural correlate of perceptual figure-ground segregation, are not yet identified. We previously proposed that highly divergent and fast-cond...
متن کاملLong-range recruitment of Martinotti cells causes surround suppression and promotes saliency in an attractor network model
Although the importance of long-range connections for cortical information processing has been acknowledged for a long time, most studies focused on the long-range interactions between excitatory cortical neurons. Inhibitory interneurons play an important role in cortical computation and have thus far been studied mainly with respect to their local synaptic interactions within the cortical micr...
متن کاملContrast-dependence of surround suppression in Macaque V1: Experimental testing of a recurrent network model
Neuronal responses in primary visual cortex (V1) to optimally oriented high-contrast stimuli in the receptive field (RF) center are suppressed by stimuli in the RF surround, but can be facilitated when the RF center is stimulated at low contrast. The neural circuits and mechanisms for surround modulation are still unknown. We previously proposed that topdown feedback connections mediate suppres...
متن کامل