A structural study of Hypocrea jecorina Cel5A.
نویسندگان
چکیده
Interest in generating lignocellulosic biofuels through enzymatic hydrolysis continues to rise as nonrenewable fossil fuels are depleted. The high cost of producing cellulases, hydrolytic enzymes that cleave cellulose into fermentable sugars, currently hinders economically viable biofuel production. Here, we report the crystal structure of a prevalent endoglucanase in the biofuels industry, Cel5A from the filamentous fungus Hypocrea jecorina. The structure reveals a general fold resembling that of the closest homolog with a high-resolution structure, Cel5A from Thermoascus aurantiacus. Consistent with previously described endoglucanase structures, the H. jecorina Cel5A active site contains a primarily hydrophobic substrate binding groove and a series of hydrogen bond networks surrounding two catalytic glutamates. The reported structure, however, demonstrates stark differences between side-chain identity, loop regions, and the number of disulfides. Such structural information may aid efforts to improve the stability of this protein for industrial use while maintaining enzymatic activity through revealing nonessential and immutable regions.
منابع مشابه
Asn124 of Cel5A from Hypocrea jecorina not only provides the N-glycosylation site but is also essential in maintaining enzymatic activity
To investigate the function of N-glycosylation of Cel5A (endoglucanase II) from Hypocrea jecorina, two N-glycosylation site deletion Cel5A mutants (rN124D and rN124H) were expressed in Saccharomyces cerevisiae. The weights of these recombinant mutants were 54 kDa, which were lower than that of rCel5A. This result was expected to be attributed to deglycosylation. The enzyme activity of rN124H wa...
متن کاملHypocrea jecorina CEL6A protein engineering
The complex technology of converting lignocellulose to fuels such as ethanol has advanced rapidly over the past few years, and enzymes are a critical component of this technology. The production of effective enzyme systems at cost structures that facilitate commercial processes has been the focus of research for many years. Towards this end, the H. jecorina cellobiohydrolases, CEL7A and CEL6A, ...
متن کاملEngineered thermostable fungal cellulases exhibit efficient synergistic cellulose hydrolysis at elevated temperatures.
A major obstacle to using widely available and low-cost lignocellulosic feedstocks to produce renewable fuels and chemicals is the high cost and low efficiency of the enzyme mixtures used to hydrolyze cellulose to fermentable sugars. One possible solution entails engineering current cellulases to function efficiently at elevated temperatures in order to boost reaction rates and exploit several ...
متن کاملThe Crystal Structure of the Core Domain of a Cellulose Induced Protein (Cip1) from Hypocrea jecorina, at 1.5 Å Resolution
In an effort to characterise the whole transcriptome of the fungus Hypocrea jecorina, cDNA clones of this fungus were identified that encode for previously unknown proteins that are likely to function in biomass degradation. One of these newly identified proteins, found to be co-regulated with the major H. jecorina cellulases, is a protein that was denoted Cellulose induced protein 1 (Cip1). Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 20 11 شماره
صفحات -
تاریخ انتشار 2011