An Overview of Recent Advances in Monte-Carlo Methods for Bayesian Filtering in High-Dimensional Spaces
نویسندگان
چکیده
Nonlinear non-Gaussian state-space models arise in numerous applications in statistics and signal processing. In this context, one of the most successful and popular approximation techniques is the sequential Monte-Carlo (SMC) algorithm, also known as the particle filter. Nevertheless, this method tends to be inefficient when applied to high-dimensional problems. In this chapter, we present, an overview of recent contributions related to Monte-Carlo methods for sequential simulation from ultra high-dimensional distributions, often arising for instance in Bayesian applications.
منابع مشابه
Sequential Monte Carlo samplers for Bayesian DSGE models
Bayesian estimation of DSGE models typically uses Markov chain Monte Carlo as importance sampling (IS) algorithms have a difficult time in high-dimensional spaces. I develop improved IS algorithms for DSGE models using recent advances in Monte Carlo methods known as sequential Monte Carlo samplers. Sequential Monte Carlo samplers are a generalization of particle filtering designed for full simu...
متن کاملA Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملInvestigation of the dose enhancement effect due to gold nanoparticles at 18 MV radiotherapy using MAGIC-f and Monte Carlo methods Thoraco-Lumbar spinal cord fMRI in 3T Magnetic field
Introduction: Normoxic MAGIC-f polymer gels are established dosimeters used for three dimensional dos uantifications in radiotherapy. The high atomic number nanoparticles such as gold are nov adiosensitizers used to enhance doses delivered to tumors. The aim of this study was t vestigate the effect of gold nanoparticles (GNPs) in enhancing percentage depth doses (PDD ithin the...
متن کاملHAMILTONIAN ABC Hamiltonian ABC
Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC remains useful for relatively low-dimensional problems. We introduce Hamiltonian ABC (HABC), a set of likelihood-free algorithms that apply recent advances in scaling Bayesian learning using Hamiltonia...
متن کاملSpatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کامل