Effects of brain amyloid deposition and reduced glucose metabolism on the default mode of brain function in normal aging.
نویسندگان
چکیده
Brain β-amyloid (Aβ) deposition during normal aging is highlighted as an initial pathogenetic event in the development of Alzheimer's disease. Many recent brain imaging studies have focused on areas deactivated during cognitive tasks [the default mode network (DMN), i.e., medial frontal gyrus/anterior cingulate cortex and precuneus/posterior cingulate cortex], where the strength of functional coordination was more or less affected by cerebral Aβ deposits. In the present positron emission tomography study, to investigate whether regional glucose metabolic alterations and Aβ deposits seen in nondemented elderly human subjects (n = 22) are of pathophysiological importance in changes of brain hemodynamic coordination in DMN during normal aging, we measured cerebral glucose metabolism with [(18)F]FDG, Aβ deposits with [(11)C]PIB, and regional cerebral blood flow during control and working memory tasks by H(2)(15)O on the same day. Data were analyzed using both region of interest and statistical parametric mapping. Our results indicated that the amount of Aβ deposits was negatively correlated with hemodynamic similarity between medial frontal and medial posterior regions, and the lower similarity was associated with poorer working memory performance. In contrast, brain glucose metabolism was not related to this medial hemodynamic similarity. These findings suggest that traceable Aβ deposition, but not glucose hypometabolism, in the brain plays an important role in occurrence of neuronal discoordination in DMN along with poor working memory in healthy elderly people.
منابع مشابه
Effect of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields on β-amyloid Deposition and Microglia Cells in an Alzheimer Model in Rats
Background: Recently, researchers have considered extremely low-frequency electromagnetic fields (ELF-EMFs), as one of the non-invasive therapies, in the treatment of many severe neurological disorders, including Alzheimer Disease (AD). AD is a progressive neurodegenerative disease characterized by the deposition of amyloid plaques in the brain. However, the increase in microglial cells increas...
متن کاملWhat is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus.
What can be expected in normal aging, and where does normal aging stop and pathological neurodegeneration begin? With the slow progression of age-related dementias such as Alzheimer's disease (AD), it is difficult to distinguish age-related changes from effects of undetected disease. We review recent research on changes of the cerebral cortex and the hippocampus in aging and the borders between...
متن کاملComparing the Impact of Long-Term Exposure to Extremely Low-Frequency Electromagnetic Fields With Diverse Values on Anxiety, Memory, Learning, and Β-Amyloid Deposition in Adult Rats
Background: Extremely low-frequency electromagnetic fields (ELF-EMFs) have gathered significant consideration for their possible pathogenicity. However, their effects on nervous system functions were not fully clarified. In this study, our aim was to assay the effect of ELF-EMFs with different intensity on memory, anxiety, antioxidant activity, beta amyloid (Aβ) deposition and microglia populat...
متن کاملDynamic relationships between age, amyloid-β deposition, and glucose metabolism link to the regional vulnerability to Alzheimer's disease.
SEE HANSSON AND GOURAS DOI101093/AWW146 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Although some brain regions such as precuneus and lateral temporo-parietal cortex have been shown to be more vulnerable to Alzheimer's disease than other areas, a mechanism underlying the differential regional vulnerability to Alzheimer's disease remains to be elucidated. Using fluorodeoxyglucose and Pittsburgh...
متن کاملP97: Physical Exercise as an Effective Factor in Alzheimer Disease
Alzheimer's disease (AD) is a progressive disease that destroys memory and other important mental activities. Scientists have found that remaining relatively active can lead to better brain activities in those at risk of developing AD. In some Meta-analyses of prospective investigations, a significantly reduced risk of dementia related to midlife exercise have been proven. Most studies have bee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 31 شماره
صفحات -
تاریخ انتشار 2011