Outliers and Bayesian Inference

نویسنده

  • Peter Sykacek
چکیده

In this paper we report about an investigation in which we studied the properties of Bayes’ inferred neural network classifiers in the context of outlier detection. The problem of misclassification due to outliers in the test data is seen as a serious problem in safety critical environments. We compare the usual way to deal with uncertainty in the Bayesian framework with a new approach based on the variance of the output layer activations and investigate the utility of both methods for outlier detection. The properties of both methods are visualized on a simple two dimensional classification problem. An investigation comparing both methods on some public data-sets with artificially constructed outlier patterns showed that a combination of the conventional method and the method proposed here should be used. These results where confirmed in a final experiment on real data, where a combination of both methods showed significantly better performance in rejecting outlying observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Practical Bayesian optimization in the presence of outliers

Inference in the presence of outliers is an important field of research as outliers are ubiquitous and may arise across a variety of problems and domains. Bayesian optimization is method that heavily relies on probabilistic inference. This allows outstanding sample efficiency because the probabilistic machinery provides a memory of the whole optimization process. However, that virtue becomes a ...

متن کامل

Sequential Monte Carlo scheme for Bayesian estimation in the presence of data outliers.

Bayesian inference has been used widely in physics, biology, and engineering for a variety of experiment- or observation-based estimation problems. Sequential Monte Carlo simulations are effective for realizing Bayesian estimations when the system and observational processes are nonlinear. In realistic applications, large disturbances in the observation, or outliers, may be present. We develop ...

متن کامل

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

Equivalent error bars for neural network classifiers trained by Bayesian inference

The topic of this paper is the problem of outlier detection for neural networks trained by Bayesian inference. I will show that marginalization is not a good method to get moderated probabilities for classes in outlying regions. The reason why marginalization fails to indicate outliers is analysed and an alternative measure, that is a more reliable indicator for outliers, is proposed. A simple ...

متن کامل

A Bayesian Approach for Detecting Outliers in ARMA Time Series

The presence of outliers in time series can seriously affect the model specification and parameter estimation. To avoid these adverse effects, it is essential to detect these outliers and remove them from time series. By the Bayesian statistical theory, this article proposes a method for simultaneously detecting the additive outlier (AO) and innovative outlier (IO) in an autoregressive moving-a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998