Electrolyte – Semiconductor Combinations for Organic Electronic Devices
نویسنده
چکیده
The discovery of semi-conducting organic materials has opened new possibilities for electronic devices and systems because of their solution processibility, lightweight and flexibility compared to inorganic semiconductors. The combination of semiconductors with electrolytes, and more especially organic semiconductors and solid electrolytes has attracted the attention of researchers because of the multiple phenomena originating from the simultaneous motion of electrons and ions. This thesis deals with organic-based devices whose working mechanism involves electrolytes. By measuring electrochromism induced by the field in isolated segments of conjugated polymer films, which is in contact with an electrolyte, the direction and the magnitude of the electric field along an electrolyte is quantified (paper I). In addition, using a polyanionic proton conductor in organic field-effect transistor (OFET) as gate dielectric results in low operation voltage and fast response thanks to the high capacitance of the electric double layer (EDLC) that is formed at organic semiconductor/ polyelectrolyte interface (paper III). Because an electrolyte is used as a gate insulator, the effect of the ionic currents on the performance of an EDLCOFET has been investigated by varying the relative humidity of the device ambience (paper IV). Since the EDLC-OFET and the electrochromic display cell both are operated at low voltages, the transistor has been monolithically integrated with an electrochromic pixel, i.e. combining a solid state device and an electrochemical device (paper V). Further, a theoretical study of the electrostatic potential within a so called pen-heterojunction made up of two semi-infinite, doped semiconductor media separated by an electrolyte region is reported (paper II).
منابع مشابه
Linköping Studies in Science and Technology
The discovery of semi-conducting and conducting organic materials has opened new possibilities for electronic devices and systems. Applications, previously unattainable for conventional electronics, have become possible thanks to the development of conjugated polymers. Conjugated polymers that are both ionand electron conducting, allow for electrochemical doping and de-doping via reversible pro...
متن کاملReconfigurable sticker label electronics manufactured from nanofibrillated cellulose-based self-adhesive organic electronic materials
Low voltage operated electrochemical devices, such as electrochromic displays, electrochemical transistors and electrolyte capacitors can be produced from electrically conducting polymers and polyelectrolytes. Here, we report how such polymers and polyelectrolytes can be casted together with nanofibrillated cellulose (NFC) derived from wood. The resulting films, which carry ionic or electronic ...
متن کاملBehavioral Modeling and Simulation of Semiconductor Devices and Circuits Using VHDL-AMS
During the past few years, a lot of work has been done on behavioral models and simulation tools. But a need for modeling strategy still remains. The VHDL-AMS language supports the description of analog electronic circuits using Ordinary Differential Algebraic Equations (ODAEs), in addition to its support for describing discrete-event systems. For VHDL-AMS to be useful to the analog design ...
متن کاملA Theoretical Investigation for Electronics Structure of Mg(Bio2)2 Semiconductor Using First Principle Approach
The Mg(BiO2)2 is the orthorhombic crystal system acting as semiconductor in electric devices. To evaluate electronic band structures, the total density of state (TDOS) and the partial density of state (PDOS), Generalized Gradient Approximation (GGA) based on the Perdew–Burke–Ernzerhof (PBE0) was used for Mg(BiO2)2. The band gap was recorded at 0.959 eV, which is supported by a good semiconducto...
متن کاملChemical engineering in the electronics industry: progress towards the rational design of organic semiconductor heterojunctions
We review the current status of heterojunction design for combinations of organic semiconductor materials, given its central role in affecting the device performance for electronic devices and solar cell applications. We provide an emphasis on recent progress towards the rational design of heterojunctions that may lead to higher performance of charge separation and mobility. We also play partic...
متن کامل