Dimer covering and percolation frustration.
نویسندگان
چکیده
Covering a graph or a lattice with nonoverlapping dimers is a problem that has received considerable interest in areas, such as discrete mathematics, statistical physics, chemistry, and materials science. Yet, the problem of percolation on dimer-covered lattices has received little attention. In particular, percolation on lattices that are fully covered by nonoverlapping dimers has not evidently been considered. Here, we propose a procedure for generating random dimer coverings of a given lattice. We then compute the bond percolation threshold on random and ordered coverings of the square and the triangular lattices on the remaining bonds connecting the dimers. We obtain p_{c}=0.367713(2) and p_{c}=0.235340(1) for random coverings of the square and the triangular lattices, respectively. We observe that the percolation frustration induced as a result of dimer covering is larger in the low-coordination-number square lattice. There is also no relationship between the existence of long-range order in a covering of the square lattice and its percolation threshold. In particular, an ordered covering of the square lattice, denoted by shifted covering in this paper, has an unusually low percolation threshold and is topologically identical to the triangular lattice. This is in contrast to the other ordered dimer coverings considered in this paper, which have higher percolation thresholds than the random covering. In the case of the triangular lattice, the percolation thresholds of the ordered and random coverings are very close, suggesting the lack of sensitivity of the percolation threshold to microscopic details of the covering in highly coordinated networks.
منابع مشابه
Frustration , connectivity , and the glass transition ’
The concepts of connectivity, localization, and frustration are explored in relation to glass formation in amorphous materials. First, the concept of eigenclusters to geometrically characterize correlations in amorphous materials is introduced, and discussed in detail for both the Ising ferromagnet and Ising spin glass models. Second, a new, glass-forming percolation model that contains frustra...
متن کاملCluster Analysis for Percolation on Two Dimensional Fully Frustrated System
The percolation of Kandel, Ben-Av and Domany clusters for 2d fully frustrated Ising model is extensively studied through numerical simulations. Critical exponents, cluster distribution and fractal dimension of percolative cluster are given.
متن کاملPercolation transition and the onset of nonexponential relaxation in fully frustrated models
We numerically study the dynamical properties of fully frustrated models in two and three dimensions. The results obtained support the hypothesis that the percolation transition of the Kasteleyn-Fortuin clusters corresponds to the onset of stretched exponential autocorrelation functions in systems without disorder. This dynamical behavior may be due to the ‘‘large scale’’ effects of frustration...
متن کاملValence Bond Ground States in a Frustrated Two-Dimensional Spin-1/2 Heisenberg Antiferromagnet
We study a class of two-dimensional spin-1/2 Heisenberg antiferromagnets, introduced by Klein [1], in which the nearest-neighbor term is supplemented by next-nearest-neighbor pair and four-body interactions, producing additional frustration. For certain lattices, including e.g. the hexagonal lattice, we prove that any finite subset which admits a dimer covering has a ground state space spanned ...
متن کاملEfficient algorithm for random-bond ising models in 2D.
We present an efficient algorithm for calculating the properties of Ising models in two dimensions, directly in the spin basis, without the need for mapping to fermion or dimer models. The algorithm computes the partition function and correlation functions at a single temperature on any planar network of N Ising spins in O(N;{3/2}) time or less. The method can handle continuous or discrete bond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 92 3 شماره
صفحات -
تاریخ انتشار 2015