The Artin Symbol as Canonic Capitulation Map. Draft

نویسنده

  • PREDA MIHĂILESCU
چکیده

We show that there is a canonical, order preserving map ψ of lattices of subgroups, which maps the lattice Sub(A) of subgroups of the ideal class group of a galois number field K into the lattice Sub(H/K) of subfields of the Hilbert class field. Furthermore, this map is a capitulation map in the sense that all the primes in the classes of A ⊂ A capitulate in ψ(A). In particular we have a new, strong version of the generalized Hilbert 94 Theorem, which confirms the result of Myiake and adds more structure to (part) of the capitulation kernel of subfields of H

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p-Capitulation over Number Fields with p-Class Rank Two

Theoretical foundations of a new algorithm for determining the p-capitulation type K ( )  of a number field K with p-class rank = 2  are presented. Since K ( )  alone is insufficient for identifying the second p-class group p K K = 2 Gal(F | ) G of K, complementary techniques are developed for finding the nilpotency class and coclass of G . An implementation of the complete algorithm in the ...

متن کامل

A Note on the Schmid-witt Symbol and Higher Local Fields

For a local field of characteristic p > 0, K, the combination of local class field theory and Artin-Schreier-Witt theory yield what is known as the Schmid-Witt symbol. The symbol encodes interesting data about the ramification theory of p-extensions of K and we can, for example, use it to compute the higher ramification groups of such extensions. In 1936, Schmid discovered an explicit formula f...

متن کامل

Capitulation and transfer kernels

If K/k is a finite Galois extension of number fields with Galois group G, then the kernel of the capitulation map Clk ~ ClK of ideal class groups is isomorphic to the kernel X(H) of the transfer map H/H’ ~ A, where H = Gal(K/k), A = Gal(K/K) and K is the Hilbert class field of K. H. Suzuki proved that when G is abelian, |G| divides |X(H)|. We call a finite abelian group X a transfer kernel for ...

متن کامل

Twisted rings and moduli stacks of “fat” point modules in non-commutative projective geometry

The Hilbert scheme of point modules was introduced by Artin-Tate-Van den Bergh to study non-commutative graded algebras. The key tool is the construction of a map from the algebra to a twisted ring on this Hilbert scheme. In this paper, we study moduli stacks of more general “fat” point modules, and show that there is a similar map to a twisted ring associated to the stack. This is used to prov...

متن کامل

Visibility of Ideal Classes

Cremona, Mazur, and others have studied what they call visibility of elements of Shafarevich-Tate groups of elliptic curves. The analogue for an abelian number field K is capitulation of ideal classes of K in the minimal cyclotomic field containing K. We develop a new method to study capitulation and use it and classical methods to compute data with the hope of gaining insight into the elliptic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009