Doping graphene films via chemically mediated charge transfer

نویسندگان

  • Ryousuke Ishikawa
  • Masashi Bando
  • Yoshitaka Morimoto
  • Adarsh Sandhu
چکیده

Transparent conductive films (TCFs) are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ), is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radical-assisted chemical doping for chemically derived graphene

Carrier doping of graphene is one of the most challenging issues that needs to be solved to enable its use in various applications. We developed a carrier doping method using radical-assisted conjugated organic molecules in the liquid phase and demonstrated all-wet fabrication process of doped graphene films without any vacuum process. Charge transfer interaction between graphene and dopant mol...

متن کامل

A simple and flexible route to large-area conductive transparent graphene thin-films

Solution-processed conductive, flexible and transparent graphene thin films continue drawing attention from science and technology due to their potential for many electrical applications. Here, an up-scalable method for the solution processing of graphite to graphene and further to self-assembled large-area conductive transparent thin-films is presented. The method proceeds via the graphite int...

متن کامل

Enhanced photoresponse of large-sized photoactive graphene composite films based on water-soluble conjugated polymers.

Composite films of chemically converted graphene (CCG) and water-soluble polythiophenes (P3TOPS and P3TOPA) were prepared by a LBL method using a suspension of negatively charged CCG-P3TOPS sheets and a solution of positively charged P3TOPA. The composite films show enhanced photoresponse due to photoinduced electron transfer from the polythiophenes to CCG.

متن کامل

Water-gated charge doping of graphene induced by mica substrates.

We report on the existence of water-gated charge doping of graphene deposited on atomically flat mica substrates. Molecular films of water in units of ~0.4 nm thick bilayers were found to be present in regions of the interface of graphene/mica heterostacks prepared by micromechanical exfoliation of kish graphite. The spectral variation of the G and 2D bands, as visualized by Raman mapping, show...

متن کامل

Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes

The interface structure of graphene with thermally evaporated metal oxide layers, in particular molybdenum trioxide (MoO3), is studied combining photoemission spectroscopy, sheet resistance measurements and organic light emitting diode (OLED) characterization. Thin (<5 nm) MoO3 layers give rise to an 1.9 eV large interface dipole and a downwards bending of the MoO3 conduction band towards the F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011