Enforcing non-negativity constraint and maximum principles for diffusion with decay on general computational grids

نویسندگان

  • Harsha Nagarajan
  • K. B. Nakshatrala
چکیده

Abstract. In this paper, we consider anisotropic diffusion with decay, which takes the form α(x)c(x) − div[D(x)grad[c(x)]] = f(x) with decay coefficient α(x) ≥ 0, and diffusivity coefficient D(x) to be a second-order symmetric and positive definite tensor. It is well-known that this particular equation is a second-order elliptic equation, and satisfies a maximum principle under certain regularity assumptions. However, the finite element implementation of the classical Galerkin formulation for both anisotropic and isotropic diffusion with decay does not respect the maximum principle. Put differently, the classical Galerkin formulation violates the discrete maximum principle for diffusion with decay even on structured computational meshes. We first show that the numerical accuracy of the classical Galerkin formulation deteriorates dramatically with an increase in α for isotropic media and violates the discrete maximum principle. However, in the case of isotropic media, the extent of violation decreases with the mesh refinement. We then show that, in the case of anisotropic media, the classical Galerkin formulation for anisotropic diffusion with decay violates the discrete maximum principle even at lower values of decay coefficient and does not vanish with mesh refinement. We then present a methodology for enforcing maximum principles under the classical Galerkin formulation for anisotropic diffusion with decay on general computational grids using optimization techniques. Representative numerical results (which take into account anisotropy and heterogeneity) are presented to illustrate the performance of the proposed formulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical methodology for enforcing maximum principles and the non-negative constraint for transient diffusion equations

Transient diffusion equations arise in many branches of engineering and applied sciences (e.g., heat transfer and mass transfer), and are parabolic partial differential equations. It is well-known that, under certain assumptions on the input data, these equations satisfy important mathematical properties like maximum principles and the non-negative constraint, which have implications in mathema...

متن کامل

On enforcing maximum principles and achieving element-wise species balance for advection-diffusion-reaction equations under the finite element method

We present a robust computational framework for advective-diffusive-reactive systems that satisfies maximum principles, the non-negative constraint, and element-wise species balance property. The proposed methodology is valid on general computational grids, can handle heterogeneous anisotropic media, and provides accurate numerical solutions even for very high Péclet numbers. The significant co...

متن کامل

On the performance of high-order finite elements with respect to maximum principles and the non-negative constraint for diffusion-type equations

The main aim of this paper is to document the performance of p-refinement with respect to maximum principles and the non-negative constraint. The model problem is (steadystate) anisotropic diffusion with decay (which is a second-order elliptic partial differential equation). We considered the standard single-field formulation (which is based on the Galerkin formalism) and two least-squares-base...

متن کامل

A numerical framework for diffusion-controlled bimolecular-reactive systems to enforce maximum principles and non-negative constraint

We present a novel computational framework for diffusive-reactive systems that satisfies the non-negative constraint and maximum principles on general computational grids. The governing equations for the concentration of reactants and product are written in terms of tensorial diffusion-reaction equations. We restrict our studies to fast irreversible bimolecular reactions. If one assumes that th...

متن کامل

Variational inequality approach to enforce the non-negative constraint for advection-diffusion equations

Predictive simulations are crucial for the success of many subsurface applications, and it is highly desirable to obtain accurate non-negative solutions for transport equations in these numerical simulations. To this end, optimization-based methodologies based on quadratic programming (QP) have been shown to be a viable approach to ensuring discrete maximum principles and the non-negative const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1003.5257  شماره 

صفحات  -

تاریخ انتشار 2010