Kras mutations increase telomerase activity and targeting telomerase is a promising therapeutic strategy for Kras-mutant NSCLC

نویسندگان

  • Weiran Liu
  • Yuesong Yin
  • Jun Wang
  • Bowen Shi
  • Lianmin Zhang
  • Dong Qian
  • Chenguang Li
  • Hua Zhang
  • Shengguang Wang
  • Jinfang Zhu
  • Liuwei Gao
  • Qiang Zhang
  • Bin Jia
  • Ligang Hao
  • Changli Wang
  • Bin Zhang
چکیده

As shortened telomeres inhibit tumor formation and prolong life span in a KrasG12D mouse lung cancer model, we investigated the implications of telomerase in Kras-mutant NSCLC. We found that Kras mutations increased TERT (telomerase reverse transcriptase) mRNA expression and telomerase activity and telomere length in both immortalized bronchial epithelial cells (BEAS-2B) and lung adenocarcinoma cells (Calu-3). MEK inhibition led to reduced TERT expression and telomerase activity. Furthermore, telomerase inhibitor BIBR1532 shortened telomere length and inhibited mutant Kras-induced long-term proliferation, colony formation and migration capabilities of BEAS-2B and Calu-3 cells. Importantly, BIBR1532 sensitized oncogenic Kras expressing Calu-3 cells to chemotherapeutic agents. The Calu-3-KrasG12D xenograft mouse model confirmed that BIBR1532 enhanced the antitumor efficacy of paclitaxel in vivo. In addition, higher TERT expression was seen in Kras-mutant NSCLC than that with wild-type Kras. Our data suggest that Kras mutations increase telomerase activity and telomere length by activating the RAS/MEK pathway, which contributes to an aggressive phenotype of NSCLC. Kras mutations-induced lung tumorigenesis and chemoresistance are attenuated by telomerase inhibition. Targeting telomerase/telomere may be a promising therapeutic strategy for patients with Kras-mutant NSCLC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficacy of BET bromodomain inhibition in Kras-mutant non-small cell lung cancer.

PURPOSE Amplification of MYC is one of the most common genetic alterations in lung cancer, contributing to a myriad of phenotypes associated with growth, invasion, and drug resistance. Murine genetics has established both the centrality of somatic alterations of Kras in lung cancer, as well as the dependency of mutant Kras tumors on MYC function. Unfortunately, drug-like small-molecule inhibito...

متن کامل

The Presence of Telomere Fusion in Sporadic Colon Cancer Independently of Disease Stage, TP53/KRAS Mutation Status, Mean Telomere Length, and Telomerase Activity

Defects in telomere maintenance can result in telomere fusions that likely play a causative role in carcinogenesis by promoting genomic instability. However, this proposition remains to be fully understood in human colon carcinogenesis. In the present study, the temporal sequence of telomere dysfunction dynamics was delineated by analyzing telomere fusion, telomere length, telomerase activity, ...

متن کامل

WT1 enhances proliferation and impedes apoptosis in KRAS mutant NSCLC via targeting cMyc.

BACKGROUND A novel link between oncogenic KRAS signalling and WT1 was recently identified. We sought to investigate the role of WT1 and KRAS in proliferation and apoptosis. METHODS KRAS mutations and WT1 (cMyc) expression were detected using Sanger sequencing and real-time PCR in 77 patients with non-small cell lung cancer (NSCLC). Overexpression and knockdown of WT1 were generated with plasm...

متن کامل

Epiregulin as a therapeutic target in non-small-cell lung cancer

Epiregulin (EREG) belongs to the ErbB family of ligands. EREG binds to EGFR and ErbB4 receptor and stimulates homodimers of EGFR and ErbB4 in addition to all possible heterodimeric ErbB complexes, resulting in the activation of downstream signaling pathways. EREG is overexpressed in various human cancers and has been implicated in tumor progression and metastasis. Oncogenic activation of the ME...

متن کامل

Corrigendum: Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients

Previous work by Del Re et al. describing the emergence of KRAS mutations following treatment of non-small cell lung cancer patients with EGFR tyrosine kinase inhibitors was inadvertently omitted from the reference list of this Article and should have been cited as follows. The statement in the Results section ‘While it is well established that KRAS activation is a mechanism of acquired resista...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017