Assessing viscoelastic properties of chitosan scaffolds and validation with cyclical tests.

نویسندگان

  • Swapnika Ratakonda
  • Upasana M Sridhar
  • R Russell Rhinehart
  • Sundararajan V Madihally
چکیده

We evaluated and modeled the viscoelastic characteristics of chitosan and chitosan-gelatin scaffolds prepared using a freeze-drying technique. Chitosan and chitosan-gelatin solutions (0.5 and 2 wt.%) were frozen at -80°C and freeze-dried. Using the scaffolds, uniaxial tensile properties were evaluated under physiological conditions (hydrated in phosphate buffered saline at 37°C) at a cross-head speed of 0.17 mms(-1) (10 mm min(-1)). From the break strain, the limit of strain per ramp was calculated to be 5% and the samples were stretched at a strain rate of 2.5%s(-1). The ramp-and-hold type of stress-relaxation test was performed for five successive stages. Chitosan and chitosan-gelatin showed nearly 90% relaxation of stress after each stage. The relaxation behavior was independent of the concentration of chitosan and gelatin. Also, changes in the microstructure of the tested samples were evaluated using an inverted microscope. The micrographs acquired after relaxation experiments showed orientation of pores, suggesting the retention of the stretched state even after many hours of relaxation. Based on these observations, two models (i) containing a hyper-elastic spring (containing two parameters) and (ii) retaining pseudo-components (containing three parameters) were developed in Visual Basic Applications accessed through MS Excel. The models were used to fit the experimental stress-relaxation data and the parameters obtained from modeling were used to predict their respective cyclic behaviors, which were compared with cyclical experimental results. These results showed that the model could be used to predict the cyclical behavior under the tested strain rates. The model predictions were also tested using cyclic properties at a lower strain rate of 0.0867%s(-1) (5%min(-1)) for 0.5 wt.% scaffolds but the model could not predict cyclical behavior at a very slow rate. In summary, the pseudo-component modeling approach can be used to model the sequential strain-and-hold stage and predict cyclical properties for the same strain rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior

Objective(s): Fabrication of scaffolds with improved mechanical properties and favorable cellular compatibility is crucial for many tissue engineering applications. This study was aimed to improve mechanical and biological properties of polycaprolactone (PCL), which is a common biocompatible and biodegradable synthetic polymer in tissue engineering. Nanofibrillated chitosan (NC) was used as a n...

متن کامل

Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications.

This study reports on the production of chitosan fibers and 3-D fiber meshes for the use as tissue engineering scaffolds. Both structures were produced by means of a wet spinning technique. Maximum strain at break and tensile strength of the developed fibers were found to be 8.5% and 204.9 MPa, respectively. After 14 d of immersion in simulated body fluid (SBF), scanning electron microscopy (SE...

متن کامل

Osteoblastic cellular responses on ionically crosslinked chitosan-tripolyphosphate fibrous 3-D mesh scaffolds.

Tripolyphosphate (TPP) crosslinked chitosan (CH)-based fibrous matrices have potential as bioactive scaffolds for bone tissue engineering. This study describes mechanical, biomineralization, and in vitro bone cell growth and differentiation properties of CH-TPP (chitosan-tripolyphosphate) fibrous scaffolds and compared with that of uncrosslinked CH one. The hydrated CH-TPP scaffolds were viscoe...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 2012